平成29年 3月3日 南極30m級テラヘルツ望遠鏡によるサイエンス 極地研(立川市)

南極THz望遠鏡を用いた太陽系惑星観測の可能性

前澤裕之 大阪府立大学大学院理学系研究科

サブミリ波-THz波ヘテロダイン分光は、惑星観測の強力なツール

中心星の活動が惑星大気環境に与える影響

1) M-G型星は、初期は活動が活発

radiation flux

Flare/CMEが惑星大気環境やhabitabilityに与える影響は? 2) CO2安定問題 COの酸化プロセス

中心星の活動のもと、地球型惑星の中層大気環境 がどのように物理的・化学的に確立されてきたのか。

- ・中層大気は対流圏と超高層の大気散逸を繋ぐ重要な領域
- ・地球は人為活動の影響もあり、素の太陽系気候/宇宙天気 の影響把握が難しい

⇒金星、火星:固有磁場を持たないCO,大気の惑星

SPART Solar Planetary Atmosphere Research Telescope

・惑星の中層大気は、適度な密度があり、
 太陽の活動の応答をとらえるのに最適
 ・スペクトルの線幅が細く、気球や航空機等で
 カバーできない高度。周波数分解能の高い
 リモートセンシングが威力を発揮

NMAの1台を利活用し、惑星観測専用にシ ステム改良 (2011年より運用開始)

- •口径: 10m 空間分解能 68秒角@0.1 THz
- 検出器: 0.1/0.2 THz 超伝導SISミクサ素子
 システム雑音 (150-250 K)
- ヘテロダイン分光: デジタルFFT
 帯域 1 GHz / 分解能 61 kHz
- Full Remote Operation (大阪府立大の研究室から)

望遠鏡キャビン内 の4K GM/JT冷凍機

金星・火星の 惑星大気スペクトルのモニタリング 2013年度の例

COスペクトル線のRetrieval解析により、CO混合比の高度分布を導出

金星におけるのCOの混合比と太陽電波

金星におけるのCOの混合比

大気化学反応ネットワークと輸送メカニズムのリンク

Credits: Data: E. Marcq et al. (Venus Express); L. Esposito et al. (earlier data); background image: ESA/AOES

金星のSO₂の空間分布の時間変化

TEXES/ NASA Infrared Telescope Facility :

子午面循環では説明できず

5 and 25 μm infrared imaging spectrometer

high spatial (about 1.5 arcsec)/ spectral (R = 80000) resolution

Fig. 5. Map of the SO₂/CO₂ line depth ratio derived from the 1350.16 cm⁻¹ SO₂ line and the 1350.40 cm⁻¹ CO₂ line (Jan. 10 and 12) and the 1366.48 cm^{-1} SO₂ line and the 1366.41 cm^{-1} CO₂ line (Jan. 11).

Encrenaz et al. 2012

SO,の変化は、詳細な鉛直分布、鉛直流 火山活動、など今後の赤外領域の観測 が重要。

250

<u>微量分子の空間分布・時間変動/大気重力波の影響評価</u> SPART/AKATSUKI/ALMA/名寄光・赤外望遠鏡

スーパーローテーション 高度 金星上空の南北・上下断面 (km) SO2、H2O、CO2から 90 H₂SO₄光化学生成 ALMA 00 80 °° 0 SO_2 , H_2O 上方輸送? 雲粒·CO輸送 70 硫 未知の子午面循環。 酸 60 の 上昇流の中で 雲 AKATSUK H₂SO₄蒸発 H₂SO₄凝結? 50 H₂SO₄ガス 40 SO2、H2O、CO循環 生成? 30 赤道 H₂SO₄分解でSO₂、H₂O生成 極 20 18

SPARTが捉えたCO短期変動の要因を探る。 ・定常的な変動(準定常)4日循環 ・突発的な乱れ(大気重力波) に関わる上下間のダイナミクス/化学的な リンクを捉える試み。 $CO_2 + SO_2 + H_2O + hv -> CO + H_2SO_4$ $xOCS + hv -> xCO + S_x$ $CO_2 + OCS -> 3CO + SO_2$

IR2/ Akatsuki

ALMA ToO観測

重力波発生時のCO・SO・SO,・HDO Band6,7の3次元分布

12m-array (50台)、ACA 7m-array(12台), 12m-TP Array(4台)

アフロディテ大陸

発生時期を予想 2016/11/20~12/13 ⇒Akatsukiの姿勢を修正/LIR(10µm)カメラで連射を実施

ALMAは半日後のdelayをもって観測を実施(金星が上がってから)

enus as seen from Akatsuki 6-12-01 07:00:00UT(

THz 30m望遠鏡の場合の解像度

サブミリ波の単一鏡でも観測可能。resolve-out/配列・季節/タイミングの運不運に翻弄されない

(1) ALMAのconfigがたまたま合致し、季節的にもギリギリ。ラッキーが重なった。

⇒ configやresolve-outの影響を受けずに、必要なtimmingで観測

できる高解像度のサブミリ波望遠鏡の重要性 (2) スーパーローテーションは、1日で90度回転

してしまう(4時間で15度)。

⇒ マルチビーム/OTFによる短時間の観測

(3)ALMAでは周波数、アンテナの観測に時間差 南極THz望遠鏡では300GHz帯のSO2やCO、700GHz帯の HCIなどを周波数分離フィルターにより同時観測したい。

(4) ALMAでは、日中の観測は控えめ。 日射の影響や、風、重力変形など・・ (ビーム、pointing 45m鏡の場合はドリフト)

- (5) Band特性、定在波。 チョッパーにアクリルのモードなど。On点とSKYの差を軽減。
- (6) 12CO, 13COなどを同時にとれるIF帯域。
- (7) DSB,SSBいずれでもOKなので、毎回のtuning後のSBRの正確な情報が欲しい。
 (10dB以上とかではなく)
- (8) スーパーローテーション(4日循環)とその発生・停止プロセス、鉛直輸送、高層の 輸送(subsolar to antisolar)と大気化学のリンク
 - ⇒ 4日間の中間圏の分子の分布の変動を捉える。

白夜での連続観測(夜間の中断がない。他測器との同時観測もしやすい) ALMAの実施状況

Γ		1回目の観測 Band6			1回目の観測 Band7			2回目の観測 Band6			2回目の観測 Band7		
		12m	7m	ТР	12m	7m	TP	12m	7m	TP	12m	7m	TP
	11月20日	24.87/16:07	52.7/16:43	55.45/16:45									
Ι	11月22日				30.32/18:26	66.31/18:26	92.76/18:41			先日、1911 I	-1 to +		⋸⋳⋺⋏
Ι	11月23日			88.93/15:54				[무,	しロに	観測し	しくえい	E(入窓	別)
	11月25日						32.25/21:40						
Γ	12月1日						97.89/21:33	26.26/19:02	52.62/18:26	88.98/16:55,	30.58/23:52	60.39/23.29	97.65/23:45
L	12月2日												53.31/12:39

周波数帯域/分解能 2GHz(ALMA etc)あれば充分カバーできる。ただし、分解能も10kHzは欲しい。

イメージバンドからの漏れ込みをチェック

<u> Orion-KLの¹²CO(*J*=2–1)の観測結果を比較較正</u>

<u>簡易な手法で観測毎に自動チェックできると安心</u>

