

ALMA による z = 6-9 銀河の性質と 南極 THz 望遠鏡への期待

橋本拓也

筑波大学 宇宙史研究センター テニュアトラック助教 (卓越研究員)

Outline

Introduction

- Cosmic reionization
- Galaxies in the epoch of reionization (EoR)
 - Spectroscopy

Rest-frame FIR properties at z > 7 with ALMA

- Case study:

properties of a z = 9.1 [OIII] 88µm emitter

- Statistics:

High ratios of L[OIII] 88 μm/L[CII] 158 μm in high-z LAEs/LBGs

(Some thoughts on AAT)

Outline

Introduction

- Cosmic reionization
- Galaxies in the epoch of reionization (EoR)
 - Spectroscopy

Rest-frame FIR properties at z > 7 with ALMA

- Case study:
 - properties of a z = 9.1 [OIII] 88µm emitter
- Statistics:
 - High ratios of L[OIII] 88 μm/L[CII] 158 μm in high-z LAEs/LBGs
- Some thoughts on AAT

Cosmic Reionization

- Reionization: z ~ 20 6 (t_{univ} ~ 200 Myr 1 Gyr)
- Hydrogen ionizing photon (LyC: λ < 912 Å or E > 13.6 eV)

Key questions

- What is the main driver of reionization?
- How, when and where reionization has processed ?

Cosmic Reionization

- Reionization: z ~ 20 6 (t_{univ} ~ 200 Myr 1 Gyr)
- Hydrogen ionizing photon (LyC: λ < 912 Å or E > 13.6 eV)
- Key questions
 - What is the main driver of reionization? [cf., blue compact galaxies]
 - → Recent consensus: abundant UV star-forming galaxies are sufficient without demanding Pop III stars (e.g., Robertson+15)

Cosmic Reionization

- Reionization: z ~ 20 6 (t_{univ} ~ 200 Myr 1 Gyr)
- Hydrogen ionizing photon (LyC: λ < 912 Å or E > 13.6 eV)
- Key questions
 - What is the main driver of reionization?
 - How, when and where reionization has processed ?
 - → future 21cm observations in the EoR (割愛)

Galaxies in the Epoch of Reionization

- Galaxy candidates at $z \approx 8 11$ owing to *HST* and *Spitzer*
- Statistical properties (UV LF, SFRD)

Galaxies in the Epoch of Reionization

- Spectroscopic properties in the EoR are yet to be constrained (redshift identification, Z, U, n_e)
- Galaxy formation and evolution
 - Ancestors of present-day galaxies
 - Origin of heavy elements (O, C, N etc.) and cosmic dust
 - Star forming activity & ISM properties (e.g. f_{esc} , Z, U, n_e)

Spectroscopy at z > 7

- Ly α is powerful at z up to ~ 7 (e.g. VLT/MUSE: Bacon+17, Hashimoto+17b)
- but strongly attenuated by the IGM at z > 7 (e.g. Stark+10, Pentericci+12)

Alternative emission line is essential

ALMA observations at z > 7

- Far-infrared fine structure lines are useful
 - metallicity, U, n_e (Nagao+12, Pereira-Santaella+18)
- Dust continuum can be simultaneously observed
 - star-formation activity (dust production/growth/destruction)

A traditional tool at high-z: [CII] 158µm

- ~20 [CII] detections at z ~ 5 7 galaxies (e.g. Carniani+17, Smit+18) Many detections in high-z QSOs
- Non-detections are reported at z > 7 (Ouchi+13, Ota+14)

[OIII] 88 µm in the local Universe

ISO metal rich spirals, L_[OIII] ≈ 0.5 x L_[CII] (e.g. Malhotra+01, Brauher+08)
 Herschel dwarf galaxies, L_[OIII] ≈ 2 x L_[CII] (e.g. Madden+12, Cormier+15)
 Some objects have L_[OIII] ≈ 10 x L_[CII]

The first [OIII] 88 μm detection in the EoR

- LAE at $z_{Lya} = 7.21$ with EW₀(Ly α) = 33 Å (Shibuya+12)
 - ALMA Band 8 follow-up observations (PI. A. K. Inoue)

Band 6 [CII] is undetected; L[OIII]/L[CII] > 12 (3σ: later discussion)
 This pioneering work opens a new window in studies of reionization

More than N > 15 [OIII] 88 μm in the EoR

also Harikane+19; Sunaga+ in prep.

Outline

Introduction

- Cosmic reionization
- Galaxies in the epoch of reionization (EoR)
 - Spectroscopy

Rest-frame FIR properties at z > 7 with ALMA

- Case study:

properties of a z = 9.1 [OIII] 88µm emitter

- Statistics:

High ratios of L[OIII] 88 μm/L[CII] 158 μm in high-z LAEs/LBGs

Some thoughts on AAT

- A lensed J-band dropout galaxy (Zheng+12, Nature)
- Bright (H=25.7) with a magnification factor (μ_g) ~ 10
- One of the highest-z galaxy candidate accessible w. ALMA

HST and Spitzer/IRAC images of JD1 F435W F606W F814W Optical

JD1 undetected

F105W F125W F140W F160W

– JD1 detected

W. Zheng+17

IRAC 1 IRAC 2

SED of JD1

[OIII] 88µm detection at z = 9.11

- ALMA Band 7 in Cy 3 $T_{tot} \approx 8.7$ hrs (PI: A. K. Inoue)
- We covered the z_{ph} range (9.0 9.8) with 4 ALMA tunings

- $z_{OIII} = 9.1096 \pm 0.0006$
- SED (K. Mawatari) analyses show age \approx 300 Myr at z = 9 \rightarrow $z_{form} \approx$ 15 ± 2

Dust continuum is undetected in JD1

 $S_{\nu,90\mu m}$ < 5.3 x (10/μ_g) μJy/B (3σ) MBB: $S_{\nu} \sim \nu^{3+\beta}/(\exp(h\nu/kT_{dust})-1)$

- $M_* \approx 1 \times 10^9 \times (10/\mu_g) M_{\odot}$ from SED-fit
- $\log(M_d to M_*) < -4 \text{ to } -3 (3\sigma) \text{ for } T_d = 60 30 \text{ K} (c.f., Popping+17) cf., <math>\log(M_d to M_*) \approx -4 \text{ to } -1 @ M_* \approx 1 \times 10^9 \text{ M}_{\odot} \text{ at } z = 0$
- Useful constraint for theoretical dust models (e.g., Calura+17)

[CII] 158 is undetected in MACS1149-JD1

- Deep follow-up observations for [CII] 158 μm (PI: N. Laporte)
- Similar beam size as used in [OIII] 88 μm observations

green \rightarrow [OIII] 88 µm blue \rightarrow [CII] 158 µm

Laporte incl. TH+19

L[OIII]/L[CII] > 18.5 (3σ; the highest ratio to date: later discussion)

Outline

Introduction

- Cosmic reionization
- Galaxies in the epoch of reionization (EoR)
 - Spectroscopy

Rest-frame FIR properties at z > 7 with ALMA

- Case study:
 - properties of a z = 9.1 [OIII] 88µm emitter
- Statistics:

High ratios of L[OIII] 88 μm/L[CII] 158 μm in high-z LAEs/LBGs

Some thoughts on AAT

[OIII] 88/[CII] 158 luminosity ratio@z=6-9

Anti-correlation between [OIII]/[CII] and L_{bol}.

[OIII] 88/[CII] 158 luminosity ratio@z=6-9

Anti-correlation between [OIII]/[CII] and L_{bol}.

Ubiquitously high [OIII]/[CII] ratios at z > 6

 $\frac{n_u}{dt} = \frac{g_u}{dt} e^{-T_*/T_s}$

25

81

 n_1

- CMB supression on [CII]? LOG[SFR (M_)]
 - T_{CMB} > 20 K cf., [CII] $T_{ex} \approx 92$ K (dashed-line: insufficient)
- High-ionization parameter in the ISM? (Inoue+16, TH+19a)
 [OIII] P_{ion} (35 eV) vs. [CII] P_{ion} (11 eV) → LyC escape ??
- Some clues on O/C? (need ionization correction)
- Detailed modeling will be performed (see also Harikane+19)
- Initial results highlight the unusual ISM conditions in the EoR

Ongoing Works of Our Team

①Morpho-kinematic properties at z = 8 - 9 2 ALMA Cy6 projects with "A" (PIs: Hashimoto, Tamura) → A reference study for future JWST and ELTs science

Combined data have intrinsic resolution of ~ 500 x 400 pc²

Ongoing Works of Our Team

②[OIII] 88 μm for five z ~ 10 candidates

- 2 ALMA Cy7 projects with "A"-33hrs (PIs: Hashimoto, Tamura)
 - → HST + Spitzer で得られる現在最高のサンプル
 - → 2 supplementary VLT observations ongoing (PI: Hashimoto) rest-frame UV lines
 - → If confirmed, strong(est) JWST and ELT targets

3 Multiple line study for "Big Three Dragons" at z = 7.15 [OIII] 52, [NII] 122, CO(7-6) & CO(6-5) & [CI](2-1)
3 ALMA Cy7 projects "B" (PIs: Matsuo, Inoue, Hashimoto)

→ A comprehensive understanding of ISM in the EoR critical density; nitrogen abundance, metallicity, gas properties

Outline

Introduction

- Cosmic reionization
- Galaxies in the epoch of reionization (EoR)
 - Spectroscopy

Rest-frame FIR properties at z > 7 with ALMA

- Case study:
 - properties of a z = 9.1 [OIII] 88µm emitter
- Statistics:

High ratios of L[OIII] 88 μm/L[CII] 158 μm in high-z LAEs/LBGs

Some thoughts on AAT

Dust emission in the EoR

z = 6.90 lensed SMG(s) Marrone+18 Nature
Originally discovered as a bright 2.0 and 1.4 mm source
by the 2500 deg² SPT survey

Combination of AAT & SPT can find such extremely dusty galaxies in the EoR Toward a complete picture (UV+IR) of SFRD evolution (Madau&Dickinson 2014)

Dust emission in the EoR

z = 6.90 lensed SMG(s) Marrone+18 Nature ALMA follow-up observations targeting dust, [CII] 158, [OIII] 88

- E and W component has $L_{IR} = (4.6 \pm 1.2)$ and $(33 \pm 7) \times 10^{12} L_{\odot}$
- E and W component has $M_{dust} = (0.4 \pm 0.2)$ and $(2.5 \pm 1.6) \times 10^9 M_{\odot}$
- [OIII]/[CII] luminosity ratio is ~ 2.0 and 0.5
- [OIV] 26 μ m with ATT or SPICA \rightarrow AGN activity

Dust emission in the EoR

4 (normal) star-forming galaxies (i.e., LBGs) with dust continuum beyond redshift z = 7 up to z = 8.3 all achieved with ALMA!

Object	redshift	λrest [µm]	Sv [μJy]	Ref.
A1689-zD1	~ 7.5	90 160	1670 ± 360 560 ± 100	Inoue & Hashimoto+20 subm. Watson+15 Nature
B14-65666	7.15	90 160	470 ± 128 130 ± 25	Hashimoto+19a
A2744_YD4	8.38	90 160	99 ± 23 < 11 (3σ)	Laporte+17 Laporte incl. TH+19
MACS0416-Y1	8.31	90 160	137 ± 26 < 18 (3σ)	Tamura, Mawatari, TH+19 Bakx, Tamura, incl. TH+20

High T_d in high-z star-forming galaxies?

Object	redshift	Td	Ref.
A1689-zD1	~ 7.5	63 – 92 K	Watson+15 Inoue & Hashimoto+20
B14-65666	7.21	50 – 60 K	Bowler+18 Hashimoto+19a
A2744_YD4	8.38	60 – 100 K	Behrens+18
MACS0416-Y1	8.31	> 90 K	Bakx, Tamura, incl. TH+20

- A larger sample is crucial for a defitnive conclusion
- High *T*_d due to compact star-formation, strong UV radiation (e.g., Inoue&TH+20)
- Partly resolve the IRX- β_{UV} and dust mass budget problems (Faisst+17, Behrens+18)

• High T_d leads to a dust peak at higher frequency (shorter wavelength) \rightarrow strategy

2020 - 2030年代に向けて

- 多波長間の連携が極めて重要
- Subaru/HSC (< 0.6 um) + WFIRST (mid 2020: 0.6-2um)
 2000平方度

NASA 2020 decadal survey

- WISH (Inoue, Kodama, Iwata+) 今後提案 2-5 um 100平方度 27.5 mag (5σ) cf., JWST は視野小
- AAT 200 um 1.5mm:広視野 (1平方度) 同程度 (> 100 平方度) の探査領域が重要 (後述)

2020 - 2030年代に向けて

①例えば z = 15 の LBG (紫外選択天体)を考える Lyman-break at (1+15) * 1216 Å ~ 20000 Å = 2 um

要は、2 um まで見えない天体 (深い未検出を確定するためデータは必要... HSC + WFIRST)

WISH (2-5 um) で静止系可視
 z = 15 LBGが選択可能になる

2020 - 2030年代に向けて

● 例えば z = 15 の LBG (紫外選択天体)を考える

● AAT (200 um - 1.5mm) で静止系中間赤外 - 遠赤外線 (13-94 um)
 z = 15 LBG のダスト連続光ピーク 付近を抑えることが可能!
 重要輝線: H2 分子輝線 17/28 um; [OIV] 26 um, [OIII] 52/88 um など
 → 個別で未検出でも多数スタックして平均像は得られる。

②静止系 紫外-可視で暗く赤外で明るい dusty SB @ z > 10
 AAT (200 um- 1.5mm) + SPT (1.2 - 3.0mm)
 同様に、静止系 紫外 - 可視 (観測波長 5 um程度まで)データは必須

多波長の2020-2030年代サーベイ予定を考慮しつつ、feasibility (感度、 探査領域 etc.) が重要。

→ ALMA2を通して詳細な分光フォローアップ