南極THz望遠鏡による 遠方銀河の輝線探査

井上昭雄(大阪産業大学)

話の内容

- ・遠方銀河観測の現状
- •赤方偏移z=7.2の[OIII]88輝線検出
- [OIII]52/88輝線予想光度関数
- 議論

Cucciati et al. (2013) with VVDS

Bouwens et al. (2015) with HST/WFC3

赤外線光度関数

Gruppioni et al. (2013) with Herschel

Konno et al. (2016)

Ouchi et al. (2010)

Lyα光度密度vs紫外線光度密度

Ηα光度関数

Sobral et al. (2015)

\Rightarrow 2.8<z<6.6 with JWST

[OII]3727, [OIII]5007**光**度関数

Khostovan et al. (2017)

 \Rightarrow 5.7<z<12 with JWST

 \Rightarrow 4.0<z<9.0 with JWST

[CII]158光度関数

By Courtesy of Y. Tamura

Photodissociation region

Herschel Dwarf Galaxy Survey

Cormier+2015

- Local dwarfs (i.e. low metallicity SF galaxies) as low-z analogs of typical SF galaxies at high redshift.
- [OIII]88 is the brightest
 - L_[OIII]88 / L_[CII]158 > 1 (up to ~10).
- High ionization state and/or "truncated" PDRs (matter-bounded Stromgren sphere)?

初期宇宙[OIII] 88µm輝線:予想

 Herschelによる近傍低金属量銀河の[OIII]88輝線観測 結果にもとづく予想では、[OIII]88輝線はz>7でもALMA で検出可能→新しいプローブ

ALMA**観測結果** •[OIII] 88 µm輝線の検出(5.3σ). • z([OIII])=7.2120 → 最遠方酸素!

Redshift N Contour: [OIII]88 7.27.217.22 7.23 A Color: Lya (NB1006) R [OIII]88 (mJy beam⁻¹) Offset (arcsecond) 0 Ч, $\Delta Ly\alpha = +110 \pm 30$ km/s (normalized) N Jya Ν F, N -500 500 n 2 0 -21 Velocity (km/s) Offset (arcsecond)

南極30m級テラヘルツ望遠鏡によるサイエンス

Inoue et al. 2016, Science

ALMA観測結果

Inoue et al. 2016, Science

• [OIII]の位置で[CII]輝線は未検出 • ダスト連続光は未検出

• Band 6 & 8

初期宇宙[OIII]88輝線検出2例目 Carniani et al. (2017) LBG/LAE z(Lya)=7.109, z(OIII)=7.097

THz輝線予想光度関数

Empirical estimation based on IR luminosity functions (Spinoglio et al. 2012)

[OIII]88, [NII]122/205輝線予想光 度関数 Orsi et al. (201

Orsi et al. (2014) Semi-analytic model predictions using Mappings-III 輝線幅∆v=50 km/s

[OIII]52/88輝線予想光度関数

[OIII]52/88輝線予想光度関数

[NII]122/205輝線予想光度関数

[NII]122/205輝線予想光度関数

Line emissivity (Inoue et al. 2014) 直線: Z=0.2Zsun, 破線: Z=Zsun, 点線: Z=0.02Zsun 輝線幅Δv=50 km/s 2017/3/3

[NII]122/205輝線予想光度関数

予想検出個数

>~0.5 Jy km/s, 100 arcmin2, dz=0.1

Line/ Redshift	[OIII]52 (Z=Zsun)	(Z=0.2Zsun)	[OIII]88 (Z=Zsun)	(Z=0.2Zsun)
z~3	~1	~2	~10	~20
z~4.5	~1e-4	~1e-3	~0.1	~0.2
Line/ Redshift	[NII]122 (Z=Zsun)	(Z=0.2Zsun)	[NII]205 (Z=Zsun)	(Z=0.2Zsun)

neusint				
z~1.3	~4	0	~20	0
z~2	~1	0	~6	0
z~3	~0.3	0	~1	0

議論:輝線光度密度(比)の進化

宇宙の星形成史

Madau & Dickinson (2014)

オリーブ色は紫外・赤外光度密度比から、 他は紫外線スペクトルスロープから推定

宇宙の星形成史

Madau & Dickinson (2014)

宇宙の恒星質量密度進化史 Madau & Dickinson (2014)

宇宙の金属量進化史

Madau & Dickinson (2014)

Mass-weighted mean stellar metallicity

宇宙のダスト量進化史

オリーブ色は紫外・赤外光度密度比から、 他は紫外線スペクトルスロープから推定 Madau & Dickinson (2014)

Popping et al. (2017) Semi-analytical model predictions

2017/3/3