

テラヘルツ帯ヘテロダイン受信機の開発研究

小嶋崇文 (国立天文台 先端技術センター)

Wenlei Shan, Matthias Kroug、Alvaro Gonzalez、藤井泰範、 金子慶子、菊池健一、浅山信一郎、江崎翔平、野口卓(国立天文台)、 池谷瑞基、高橋宏明、酒井剛(電気通信大学)、 鵜澤佳徳、牧瀬圭正、寺井弘高(情報通信研究機構)、 相馬達也、山本智(東京大学)

本研究の一部は

-新学術領域研究25108005 原始惑星系の化学的多様性とその進化 -基盤研究C 26420330 量子雑音限界を目指した高感度テラヘルツ検出器の研究 により実施中.

内容

- ヘテロダイン受信機の将来開発テーマ

- ALMA Band 10受信機の性能向上に向けた課題抽出と

- 一部の検討結果
 - SIS受信機の低雑音化
 - 2SB化の課題
- ALMA Band 11(テラヘルツ)受信機開発の進捗と課題
 - SISミキサ 接合と同調回路
 - HEBミキサ:
 1.2-1.5 THzヘテロダイン応答を確認

ALMA Cartridge Receivers Mass-produced at ATC

Band 10受信機の性能向上に向けた課題と取り組み

- 1. SIS受信機のさらなる低雑音化
 - 1. LO雑音の低減
 - 2. 同調回路内の損失低減
- 2. サイドバンド分離型ミキサ(2SB)化

図:応用物理学会誌より

LO雑音の低減
 テラヘルツ帯で問題となるLO電力不足を解消
 一方, RF90度ハイブリッドや2つのSISミキサ,
 IF180度ハイブリッドが必要になるため,回路の小型化・簡素化が必須.

進捗

Experiment of 790-950 GHz Balanced SIS mixer

・当周波数帯で, バランスドミキサーの原理を実証. Band 10受信機で生じた課題であるLOノイズは改善の見通し ・課題は, 導波管損失の低減

小嶋他, 低温工学, 2014

2SB化への課題

-モジュール型の90度ハイブリッド+LOカプラは導波管損失約0.7dB(15%)/15 mmが発生. ミキサブロックへ回路を集積するとともにLO導入系の工夫が必要

課題

-SiO,上のNbTiN膜の品質

-NbTiN/Nb//Nb/NbTiNの準粒子トラップによるHeating現象

Band 11受信機の開発状況

2015/11/18

南極で切り開くテラヘルツ天文学

11

Heterodyne Mixer Element (SIS vs HEB)

Frequency Band: 1.25-1.57 THz at present (Fractional BW: 22.7 %)

SISおよびHEBミキサの両面から開発を進めている.

- SIS: "Quantum limited" sensitivity < 1 THz
- HEB: State-of-the-art > 1 THz, almost frequency independent

THz heterodyne Receiver Noise budget

例えば、受信機雑音を500 K以下に抑えるには、

		SIS Re	ceiver (sing	le ended)	HEB Receiver		eiver	
	Operating Temp. [K]	Gain [dB]	Input noise [K]	Noise at Rec. Input [K]	Gain [dB]	Input noise [K]	Noise at Rec. Input [K]	
Vacuum window	295	-0.2	13.9	13.9				
IR filter	110	-0.2	5.2	5.4				
IR filter	15	-0.2	0.7	0.8				
Cold optics	4	-0.2	0.2	0.2				
Waveguide	4	-0.3	0.3	0.3				
LO coupler	4	-0.5	0.4	5.6				10-dB couple for single-ended
Tuning circuit	4	-4.0	6.0	8.6				
Mixer	4	-5.0	101	362.3	-10.0	235.2	338.2	1.5 <i>hfl k</i> _B (SIS), 3.5 <i>hfl k</i> _B (HEB)
Isolator	4	-1.0	1.0	11.8			14.9	
1 st Amplifier	4	31.0	< 5.0	71.6			90.5	
Room temp. IF	295	24	<1100	10			12.6	
		43.2		491	42.2		483	< 500 K

Terahertz source by VDI

- Source to 1.3-1.5 THz Configuration Amp-X2-X2-X3-X3 ~200 mW of power at 155 GHz
- For wider BW operation, they used "Frequency Optimized Bias"

Need to be more compact. Frequency limit is because of lower frequency multiplier

http://vadiodes.com/index.php/en/

Combination of SIS Junction Materials for 1.2-1.6 THz mixer

課題抽出

NbNベースの接合を現在検討中

	Material	Energy $\Delta_1 + \Delta_2$	Theoretical limit	Practical limit (Expected as 80 % of theory)
X	Nb//Nb	~2.8 meV	1.35 THz	~1.05 THz
Δ	Nb//Nb(Ti)N	~3.5 – 3.7 meV	1.7-1.8 THz	~1.35 THz
0	NbTiN//NbTiN	~4.5 meV	2.2 THz	~1.7 THz
0	NbN//NbN	~5.5 meV	2.65 THz	~2.1 THz

Combination of SIS Junction Materials [for 1.2-1.6 THz mixer

0.3 $\Delta_1 + \Delta_2$ 0.2 Requirement $\Delta_1 + \Delta_2 > 3.3 \text{ meV}$ Current [mA] 0.1 0.0 -0.1 Supercond c \pm -0.2 Superco -0.3 -5 -4 -3 -2 -1 0 1 2 3 4 5 Voltage [mV] $\frac{\Delta f}{f_{\rm center}} \propto \frac{1}{\omega R_{\rm N} C} \propto J_{\rm C} = \frac{\pi}{4} \frac{V_{\rm g}}{R_{\rm N} A}$ Band 10 (~20 %比帯域):10-13 kA/cm²で達成

NbN接合を用いた場合、単純計算では $\frac{1400 \text{ GHz}}{870 \text{ GHz}} \frac{V_{g,\text{NbN}}}{V_{g,\text{Nb}}} = 3.2 より, J_{\text{C}} > 30 \text{ kA/cm}^2 が必要$

Tuning circuit material

課題抽出

課題抽出

At present, no superconducting material is available for B11 tuning circuit.

	Ground plane (270 nm thick)	Dielectric layer (300 nm thick)	Wiring layer (500 nm thick)	Highest application Frequency [THz]
M-I	Nb-a	$SiO_2(\varepsilon_r = 4.4)$	Nb-a	0.7
<mark>М-П</mark>	NbN	MgO ($\varepsilon_r = 9.8$)	NbTiN	1.2

Structure of a THz SIS mixer

計画中

1.5 THz HEBミキサ-アンプモジュール

進捗

・RF+LO用のダイアゴーナルホーンがミキサブロックと一体化 ・IF広帯域化の妨げとなっているアイソレータを取り除き、ミキサとアンプを直結.

進抄

THz HEB mixerのヘテロダイン応答特性

進捗

Paper in preparation

Summary

- Band 10受信機の性能向上に向けた課題
 - SIS受信機の低雑音化
 - 2SB化の課題
- Band 11(1.2-1.5 THz)受信機開発の進捗と課題
 - SISミキサ:
 High gap 材料, 同調回路の損失低減, 臨界電流密度が課題.
 今後準光学ミキサを用いて動作実験予定
 - HEBミキサ: ヘテロダイン応答(IF:0.5-7GHzの応答)を確認
 - •ビーム測定系の構築と評価
 - WR0.71導波管の損失評価