Magnetic field structure in star-forming regions by polarization observations

Munetake MOMOSE (Ibaraki University)

Summary of this talk

- <u>星・惑星形成における磁場</u>が果たす役割の解明は観 測的に<u>未開拓</u>かつ<u>重要</u>テーマの1つ
- ・星・円盤形成時の磁場の役割やダスト整列に関し、<u>予</u>
 <u>言能力・検証可能な理論</u>が登場したことに加え、<u>近年</u>
 <u>の観測進展(SCUPOL, PLANCK, ALMA)</u>
- ・<u>地上サブミリ波望遠鏡は、コア構造を分解(≤ 10")しつ</u>
 <u>ながら高感度な広域観測が可能</u>で、このテーマにとってユニークな装置能力を持たせうる

Introduction: Star-formation & magnetic fields

Formation of low-mass stars

Importance of magnetic (**B**-)field in formation of stars and planets

- Transportation of angular momentum in a core
 - inevitable during star formation ("." $L_{core}/M_{core} \gg L_*/M_*$)
 - magnetic breaking catastrophe !?
 - outflows & jets
- Turbulence by MRI in a disk
 - provide viscosity in an accretion disk
 - hinder the growth of dust grains
- Dissipation of B-field should occur during star formation
 - (" $B_{core}R_{core}^2 \gg B_*R_*^2$); when, where and how ?
 - Ambipolar diffusion \rightarrow Ohmic dissipation in a disk ?
 - Reconnection diffusion in a core ? (González-Casanova+ 2016)

Observational studies on B-field

- B-strength: Zeeman effect, (Faraday rotation)
 - OH, CN, (HI)
 - CCS with large SDs and ALMA, mainly at 40 GHz
- B-direction: Polarization due to dust extinction/emission
 - Polarization seen in background stars at optical & near-IR (*extinction*; B E-vector): mainly on large scales (> 1pc)
 - Polarization in *emission* at far-IR & sub-mm (B
 E-vector) : various size scales (shown later)
- Millimeter & sub-millimeter wavelengths are unique :
 - B-field in densest & coldest regions
 - Ground-based telescope \rightarrow high resolution + wide field

Davis-Greenstein mechanism: --- a "classical" theory (1951) ---

Radiative torques + grain "helicity"

Figures by Draine & Weingartner (1996); Andersson+ (2015) for the review

Polarization images: extinction vs. emission

Polarization (*I,b*) map by <u>extinction</u> (optical & nIR)

√o. 1179

THE ASTRONOMICAL JOURNAL

187

o the equation:

$$\kappa = \frac{2\sqrt{2}\lambda^2 n^2 e^6}{3\sqrt{\pi}\mu c^3 (mkT)^{3/2}} \log_e \left(\frac{4kT}{e^2\sqrt[3]{2n}}\right)^2,$$

where κ is the absorption coefficient, λ the wave ength, *n* the electron density, *e* the charge on the electron κ the velocity of light *n* the refract 10,000° at a height of 10,000 km and then to rise exponentially to a maximum temperature of 10⁶ degrees at a height of 25,000 km. This set of conditions in the solar atmosphere adequately means & partices end quitten of the solar radio wave lengths.

1. Proc. Roy. Soc. A, 193, 44-59, 1948.

B || pol. E-vector

Polarization (*I,b*) map by <u>emission</u> at 353GHz

Planck Collaboration (2015)

B ? pol. E-vector

Pol-images in dense cores

Pol. in 230GHz with SMA Girart+ (2006)

Pol. vector of 125 background stars in H-band (yellow)

R.A. (J2000)

Polarization at mm-submm in star-forming regions

SCUBA-POL at λ=850μm (Results in 1997-2005 by Matthews+, ApJS, 182, 2009)

Declination

Figure 1. Arrangement of bolometers across the 850 μ m SCUBA detector array.

Star formation occurs in a filament --- Herschel studies ---

Herschel/SPIRE 250µm dust continuum image of B211/B213/L1495 in Taurus (Palmeirim+ 2013)

&

"Fibers" in the filament identified in C¹⁸O(J=1-0) (Hacor+ 2013)

"Striations" I filaments, consisting of "fibers"

Comparisons with B-field from near-IR

Green: B-field suggested by dust polarization in near IR (Heyer+ 2008; Chapman+ 2011)

Black: Filaments

Blue: Striations

Dust polarization seen by ALMA (1): --- massive SF clumps (Cortes+ 2016) ---

Color + contour image : Stokes I at λ =1mm; pseudo-vectors: B-fields (blue > 5 σ ; green > 3 σ)

Dust polarization seen by ALMA (2): --- a protoplanetary disk (Kataoka+ 2016) ---

PI & E-vectors (> 3σ) by pseudo-vectors

Dust polarization seen by ALMA (2): --- a protoplanetary disk (Kataoka+ 2016) ---

HD142527 (d=140 pc)

"Polarization flip" in NE, due to <u>self-scattering</u> by large (size ~ 150µm) grains ? (see also Kataoka+ 2015)

Radiative grain alignment is

more efficient than B-field ? (Tazaki, Lazarian & Nomura 2017)

PI & E-vectors (> 3σ) by pseudo-vectors

Summary of the current status

- Large scale (> 1pc) B-fields and corresponding filaments
- ALMA is accumulating new Pol. Data at smaller scale
 - Pol. does not always trace B-fields in protoplanetary disks
 - Good laboratories for studies on alignment mechanism
- Progress in theories of dust alignment mechanisms
 - "Quantitative" predictive power
- Connection btw large-scale and cores/clumps; unknown
 - BISTRO with JCMT/SCUPOL 2 ?
 - Wide-field imaging with $\lesssim 10^{\prime\prime}$ resolution is essential
 - ALMA will not be the best instrument for this purpose ... (probably)

Technical considerations

Targets

- Any frequency will do (350 GHz & > 800 GHz ?)
- A_v≥20mag., or N(H) ≥ 3.7 × 10²² cm⁻² & cold (T ≈ 15K) regions (see Draine (2003); to be complimentary to nIR and SPICA)
- Polarization degree $\gtrsim 5\%$ (1 σ = 1% of total intensity)
 - Systematic errors, loss in optics (e.g., transparency of HWP) & depolarization in the beam are for further studies
 - Advantage: Very stable condition in polar nights !?
- Suppressing other systematics
 - Differential imaging (frequent pol. switching) will be the key (c.f. Subaru HiCIAO)
 - Status of BISTRO with JCMT/SCUBA2-POL ?

Av > 20mag, T=15K, 5%-pol.deg (5σ)

	D=10m		D=30m	
Frequency [GHz]	Beamsize [asec]	Required sensitivity of 1% Total I (1σ) [mJy/beam]	Beamsize [asec]	Required sensitivity of 1% Total I (1σ) [mJy/beam]
400	18.6	1.11	6.2	0.123
850	8.7	1.95	2.9	0.216

※観測時間の見積もりは、(1)偏光成分取得、(2)半波長板透過率などの考慮もさらに必要。

Summary of this talk

- <u>星・惑星形成における磁場</u>が果たす役割の解明は観 測的に<u>未開拓</u>かつ<u>重要</u>テーマの1つ
- ・星・円盤形成時の磁場の役割やダスト整列に関し、<u>予</u>
 <u>言能力・検証可能な理論</u>が登場したことに加え、<u>近年</u>
 <u>の観測進展(SCUPOL, PLANCK, ALMA)</u>
- ・<u>地上サブミリ波望遠鏡は、コア構造を分解(≤ 10")しつ</u>
 <u>ながら高感度な広域観測が可能</u>で、このテーマにとってユニークな装置能力を持たせうる