THz帯SIS素子の開発の現状 - 1.5--2.0 GHz帯SISミキサの開発に向けて -

野口 卓、山下 弘基、酒井 剛 (電気通信大学)

Requirements for a heterodyne receiver at 1-2 THz band

		HEB	SIS
Operation (center) frequency	$f_0 > 1.5 \text{ THz}$	0	$2f_{Gap} \ge 2 \text{ THz}$ $J_c \ge 50 \text{ kA/cm}^2$
Fractional frequency bandwidth	$\frac{\Delta f}{f_0} > 0.3$	0	$J_c \ge 50 \text{ kA/cm}^2$
IF frequency bandwidth	$\Delta f_{IF} \sim 20 \; \mathrm{GHz} \ (f_{IF} \sim 0 - 20 \; \mathrm{GHz})$	X	$J_c \ge 50 \text{ kA/cm}^2$
		$f_{Gap} =$	$=rac{\Delta_1+\Delta_2}{h}$

SIS junctions to be used for heterodyne receivers at 1-2 THz band 1

Operating frequency and gap energy

$$2f_{Gap} = \frac{2(\Delta_1 + \Delta_2)}{h} \ge 2 \text{ THz} \implies \Delta_1 + \Delta_2 \ge 4.14 \text{ meV}$$

	Gap energy (meV)	Nb	NbN	Nb3Ge	MgB2
Nb	1.35	2.7 meV 1.30THz			
NbN	2.36	3.71 meV 1,80 THz	4,72 meV 2.28 THz		
Nb3Ge	3.46	4.81 meV 2.33 THz	5.82 meV 2.81 THz	7.92 meV 3.35 THz	
NgB2	~6.5	7.85 meV 3.80 THz	8.86 meV 4.28 THz	9.96 meV 4.82 THz	13 meV 6.3 THz

Current density of SIS junctions

 $\frac{1}{\omega R_N C_I} = 0.1 - 0.3$: Fractional bandwidth $I_C R_N = V_C$: Material constant $C_I = C_s A$ A : Junction area C_s : Specific capacitance 40 – 80 fF/ μ m² $\frac{\Delta f}{f} = \frac{1}{\omega R_N C_I} = \frac{1}{\omega} \frac{I_C}{V_C} \frac{1}{C_s A} = \frac{1}{2\pi} \frac{j_C}{f} \frac{1}{V_C C_s}$ Increase f keeping $\frac{\Delta f}{f}$ constant, j_C must be increased Increase $\frac{\Delta f}{f}$ keeping f constant, j_C must be increased

SIS junctions to be used for heterodyne receivers at 1-2 THz band 2

Native barrier Nb/AlOx/Al/Nb etc.

Deposited barrier NbN/MgO/NbN etc.

Current density of SIS junctions

Nb/Al/AlOx/Al/Nb

M. Kroug et al., to be published.

H. Ishida et al., Electronics and Communications in Japan, Part 2, Vol. 88, No. 12, 2005

Z. Wang et al., Appl. Phys. Lett. 70, 114 (1997).

Nb/AI接合のサブギャップ電流について

Niobium SIS Junctions with Al Cap Layer

- > previously reported:
 - SIS Junctions Based on AIN_x Barrier
 - $-j_{\rm c} = 10 45 \text{ kA/cm}^2$
 - sharp non-linearity and low leakage with q > 20
 - several devices successfully tested in the 400 – 500 GHz range (including a $j_c \sim 45$ kA/cm² mixer)
- same approach recently used for:
 SIS Junctions Based on AlO_x Barrier
 - junction quality comparable for current density up to 25 kA/cm²
 - fabrication not optimized yet
- we have a promising additional option for fabricating high-j_c SIS mixers

Ultra high current density SIS junction

IV characteristics of three junctions, nominal diameter $\phi_j = 1.0$, 0.9 and 0.8 µm, made from the layer stack Nb/Al,AlN_x/Al/Nb.

current density j_c // kA/cm²

High Critical Current Density (J_c) SIS Junction Device Development

本研究の目指す技術開発

 $\Delta_{\rm Nb} \approx 1.35 \text{ meV}$ $f_{GAP} \approx 0.7 \text{ THz}$

 $\Delta_{\text{Nb}_3\text{Ge}} + \Delta_{\text{Nb}} \approx 4.81 \text{ meV} \Longrightarrow f_{GAP} \approx 1.2 \text{ THz}$ $\implies f_{MAX} \approx 2f_{GAP} = 2.4 \text{ THz}$

X'tal Al₂O₃ (sapphire) substrate

Simulated RF response of a Nb3Ge/barrier/Nb junction

Nb₃Ge/SiO2/Pb junction

M. Muck et al., IEEE Trans. Magn., Vol. 23(2), 1493 – 1496, 1987.

Note: Pb was etched by $FeCl_3$ solution, whereas Nb₃Ge was etched reactively in an SF₆ plasma.

Nb₃Ge/NbOx/Pb junction

Nb₃Ge/Oxide/Pb

K. Tanabe and O. Michikami, J. Appl. Phys., vol.58(9), 3519-3528, 1985.

$$Pb: T_c = 7.2 K$$

Substrate: $(1\overline{1}02)$ Sapphire (R plane) Nb₃Ge preparation:

DC magnetron sputtering Target: Arc melted Nb_{0.742}Ge_{0.258} Subst. Temp.: ~700 ℃ Sputt. Rate: ~20 nm/min. Thickness: 300-400 nm Tc: 21.3 K (Breaking vacuum) Base electrode patterning: Chemical etching (Breaking vacuum) Base electrode cleaning: $Ar + 9.7vol\% CF_4$ Oxidation: Plasma oxidation, Ar + 8.1vol%O₂ 4 Pa, 60 V, 1-30 min. (typcal) Pb deposition: Thermal deposition, 400-600 nm

 $Pb \longrightarrow Nb$

- ・ 物理的、化学的に安定
- ・ドライエッチングが可能 → 写真製版による微細加工が可能

Suppression of leakage current

従来技術の拡張 Nb₃Ge/NbOx/Pb → Nb₃Ge/NbOx/Al/Nb

Nb₃Ge/Oxide/Pb

K. Tanabe and O. Michikami, J. Appl. Phys., vol.58(9), 3519-3528, 1985.

Substrate: (1102) Sapphire (R plane) $Nb_{3}Ge$ preparation:

DC magnetron sputtering Target: Arc melted Nb_{0.742}Ge_{0.258} Subst. Temp.: ~700 °C Sputt. Rate: ~20 nm/min. Thickness: 300-400 nm Tc : 21.3 K (Breaking vacuum) Base electrode patterning: Chemical etching (Breaking vacuum) Base electrode cleaning: Ar + 9.7vol%CF₄

Oxidation: Plasma oxidation, Ar + 8.1vol%O₂

4 Pa, 60 V, 1-30 min. (typcal)

Pb deposition: Thermal deposition, 400-600 nm

Al/Nb deposition:

E-beam deposition, 400-600 nm

Fabricaton of a SIS junction with a Nb₃Ge base electrode

Procedure of the growth of the quadruple-layers (同一真空中で真空を破らずに実施)

1	Substrate temperature elevation	Up to 950 ℃	Sputter chamber
2	Nb3Ge sputter	Φ2 inch target, confocal config.	Sputter chamber
3	Substrate temperature cool down	Down to room temperature	Sputter chamber
4	Plasma oxidation (NbOx)	10%O2/Ar	Load locked chamber
5	AI deposition	< 10 nm thick	Sputter chamber or evaporation chamber
6	Nb deposition	100 nm	Sputter chamber

MBE/スパッタ成膜システム構成図

スパッタ装置 ES-350改

ロードロックチャンバ

スパッタチャンバ

加熱ステージマニピュレータ

Nb3Ge薄膜の試作

Fabricated and measured by H. Yamashita

Sputtering apparatus

:Ar pressure = 0.4Pa, Shutter: open, 12 nm/min
: Ar pressure = 0.8Pa, Shutter: open, 7 nm/min
: Ar pressure = 0.8Pa, Shutter: close, 2 nm/min
: No transition

 Nb_3Ge film on 35-mm Φ sapphire

Future work

- 高Tc Nb₃Ge膜の作成条件の確定
- ・Nb₃Ge/Oxide/Al/Nb SIS接合の作成 oxide: Al₂O₃ or Nb₂O₅

