Ionized components in star forming regions by spectroscopic observations

Masao Saito (NRO=>NAOJ TMT Project)

Introduction: Star-formation & magnetic fields

Scientific Background

• Star Formation

- Wide coverage of density and temperature (too general comments)
- Magnetic field important role how at earliest stage?
- Jet/outflow magnetic field involved launching mechanism?
- Atomic/ionized component. less dense ionized regions
- Planet Formation (ALMA)
 - High resolution is a key.
 - New radical ideas may be needed ([N II])

Formation of Stars and Planets

Magnetic field Angular momentum in a core scale $B_{core}R_{core}^2$ Magnetic field and removal angular momentum in a jet/outflow $B_{core}R_{core}^2 - B_{disk}R_{disk}^2 - B_*R_*^2$

Core scale 10³⁻⁴ au

Jet/Disk scale 10⁰⁻³ au Stellar scale

2017/3/2-3

Antarctica 30 m telescope

- Ground Based Telescope
 - Large Collecting Area
 - Good Angular Resolution (a few arcsecs)
 - Potentially wide frequency coverage
- Antarctica Site
 - New atmospheric window
 - Advantage : inaccessible windows from MK or Atacama
 - Disadvantage: Single dish
- Targets:
 - size >> angular resolution

Frequency [GHz]

Complemental Instrument

Target (2" resolution)

	size	D=10 pc	D=150 pc	D=1kpc	D=10 kpc
Debris Disk	100 au	20 au	300 au		
Protoplanetary disk	100 au		300 au		
Low-mass star	100-10000 au		300 au	2000 au	
Low-mass jet/outflow	1-10000 au			2000 au	
Hot core (IRDC)	100-10000 au			2000 au	0.1 рс
high-mass outflow	100-10000 au			2000 au	0.1 рс
Cloud (CCC)	1-5 pc				0.1 рс
GMC (SNR)	10-100 pc			2000 au	0.1 рс

Measurement of Magnetic Field

- See Momose-san's
 Presentation in continuum
- Zeeman (HI, OH, CN)
 - Circular polarization measurement |B| along the line of sight.

Measurement of Magnetic Field TMC-1 CCS observation

南極30m級テラヘルツ望遠鏡によ

- Zeeman in reality
 - Extremely difficult (e.g. instrumental calibration)
 - E.g. $\Delta f \sim 64$ Hz @100 μ G in CCS at 45 GHz << thermal broadening

Stokes I

Ionization Fraction

Measurement of Ionization Fraction

- If zero, no magnetic force is exerted.
- Ambipolar diffusion
 - Dense cores slippage of gas through the ambient magnetic field.
 - Time scale critically depends on the ionization fraction.
- Ionization fraction $x(e)=n_{e}/n_{H}$
 - ~ 10⁻⁷ from previous studies

Measurement of Ionization Fraction: DCO⁺/HCO⁺

 $H_{3}^{+} + HD \rightleftharpoons H_{2}D^{+} + H_{2}.$ (1) $\frac{n(DCO^{+})}{n(HCO^{+})} = \frac{1}{3}\frac{n(H_{2}D^{+})}{n(H_{3}^{+})} = \frac{n(HD)}{n(H_{2})}f,$ (2) $f = k_{f}\left[k_{r} + \frac{\alpha(H_{2}D^{+})n_{e}}{n(H_{2})} + \sum_{X}k_{X}\frac{n(X)}{n(H_{2})}\right]^{-1}.$ (3)

- [e⁻] ~ 10 ^{-7+-0.5} for lowmass dense cores (Willaims+98)
- [e⁻] ~ 10 ^{-6.9-7.3} for highmass dense cores (Bergin+99)
- This method cannot be apply to cold dense cores

Cold Dense Cores: Depletion

南極30m級テラヘルツ望遠鏡によるサイエンス

Measurement of Ionization Fraction: H₂D⁺

- H_2D^+ is a more direct probe of ionization fraction.
- H_2D^+ is more robust against depletion in dense cold cloud cores.
- It is not easy to observe at 372.421 GHz from ground based telescopes.

Measurement of Ionization Fraction: H₂D⁺

南極30m級テラヘルツ望遠鏡によるサイエンス

Measurement of Ionization Fraction: H₂D⁺

Caselli+03

ŀ<u></u>∓`

10⁻⁹

10⁻¹¹

• $x(H_2D^+)=N(H_2D^+)/N(H_2) \sim 1 \times 10^{-9}$

• x(e) ~ 2 x 10⁻⁹

 $(10^{+}0.10^{-10})$ • Applicable to cold dense cores (IRDC) or dead zone.

> -12fD: CO depletion 10factor

 10^{1}

 $f_{\rm D}$

 $x(H_2^+)$

 10^{3}

 10^{2}

 10^1

 10^{-1}

10⁻²

 10^{3}

 10^{2}

RDEUT

 $R_{\text{DEUT}} \equiv$

Outflow

Outflow components

- Molecular
 - CO
 - HCO⁺
 - H₂
- Atomic
 - HI
 - [C I]
- Ionized
 - [N II]

Atomic and Molecular Component

- Spatial Distribution
- Momentum
- Only few [C I] observatio 🔶

lonized Gas

Ionized Gas

• [H II]

- Halpha
- Recombination Lines

• [C II]

- PDR
- Coexist with H

• [N II]

- > 13.6 eV
- Hard tracer

Name	Symbol	Atomic Number	Atomic Weight	Electro- negativity	lonization Energy eV
Hydrogen	Н	1	1.0079	2.1	13.5984
Helium	He	2	4.0026	0	24.5874
Lithium	Li	3	6.941	0.98	5.3917
Beryllium	Be	4	9.0122	1.57	9.3227
Boron	В	5	10.811	2.04	8.298
Carbon	С	6	12.0107	2.55	11.2603
Nitrogen	N	7	14.0067	3.04	14.5341
Oxygen	0	8	15.9994	3.44	13.6181

[N ||]

- Exclusively trace (embedded) young massive star, not the warm ionized medium
- Template for extragalactic objects
- Applicable to jet/outflow or protoplanetary disk?

[N II] map of Carina

- Corresponds to ionized region
- Trace extended Low-density (ELD) ionized region.

Proposed Observations

H₂D⁺ Targets

- Goal: To derive x(e) in dense cold cores at pre-stellar phase
- $A_v \gtrsim 10$ mag., or N(H) $\gtrsim 5.8 \times 10^{21}$ cm⁻² & cold ($T \approx 10$ K) regions (to be complimentary to near-IR and SPICA), Low-mass prestellar cores and/or IRDCs
- Same targets as Momose-san's talk
- dT_A* = 0.3 K in TB
- dv = 0.25 km/s
- Mapping area 120" with 2" sampling
- Obstime ~ 60/4 x 60 x 60 x 3 sec ~ 45 hr

[CI]/CO(7-6) Targets

- Goal: To derive momentum of atomic component of young outflows
- Low-mass Protostars
- dT_A* = 0.54 K in TB
- dv = 1 km/s
- Mapping area 120" with 1" sampling
- Obstime ~ 120/4 x 120 x 30 x 3 sec ~ 180 hr

[N II] Targets

- Goal: To reveal spatial distribution of hardness of ionization
- Cluster Regions
- $dT_A^* = 2 \text{ K in TB}$
- dv = 1 km/s
- => dt = 45 sec
- Mapping area 70" with 0".7 sampling
- Obstime ~ 100/4 x 100 x 45 x 3 sec ~ 94 hr

System Requirement

- Antenna ([N II] Observable at 1.5 THz)
 - Pointing (<1/10 $\theta_{\rm FWHM}$) overcoming disturbance and pointing jitter
 - Surface accuracy (< 16/ λ ~ 12 μ m)
- Rx
 - Frequency Coverage (373 GHz observable (currently at band edge?)
 - Sideband Rejection (> 10 dB) Avoid noise from an imaging band
 - IF bandwidth (> 10 GHz) CO/[C I] obs with HCO⁺
 - Spectral dynamic range
 - Gain Stability

1.5 THz with 3.5 GHz width $^{\sim}$ 115 GHz with 250 MHz

• Data Storage

Calibration Requirement

- Amplitude Calibration (not established > 1 THz)
 - Absolute
 - Relative (repeatability)
- Pointing/squint/focus
 - Pointing jitter?
- Surface/Efficiency

Summary

- Star Formation Study with the 30 m telescope
- Ionization fraction (H₂D⁺)
- Atomic/molecular outflow ([C I]/CO)
- [N II] observations
- System requirements to be considered accordingly
- Each science topic in the present talk is to be compared against other methods in detail.