^{南極望遠鏡ワークショップ} **気球搭載遠赤外線干渉計 FITEと南極干渉計への応用** (Far-Infrared Interferometric Telescope Experiment)

Altitude (km)

「あかり」成功! 2006年2月22日打上げ 遠赤外線全天サーベイ

オリオン座方向の天の川

波長140 µm (2.1 THz)

Planck ミリ波 全天マップ

遠赤外線観測の 重要性と観測条件

原始惑星系円盤/残骸円盤

FITE干涉計概念図

遅延線不要の像再生法の発案・原理実証 (Matsuo et al. 2008)

Along the S-Axis, Optical Path Difference $\vec{b} \cdot \vec{\phi}$ is generated.

Fourier Transformation of Visibility on the S-Axis $\int ds \Gamma_{12}^{(r)} e^{2\pi i \frac{v}{c} \vec{b} \cdot \vec{\phi}} = \iint d\xi d\eta I_{S}(\xi, \eta, v) e^{-2\pi i \vec{u} \cdot \vec{\theta}}$

Fourier Transformation on (u,v)plane

$$I_{S}(\xi,\eta,v) = \iint dudv \left\{ \int ds \Gamma_{12}^{(r)} e^{2\pi i \frac{v}{c} \vec{b} \cdot \vec{\varphi}} \right\} e^{2\pi i \vec{\theta} \cdot \vec{u}}$$

Source Image Can be Reconstructed without Delay Line

新遠赤外線アレイ (Stressed Ge:Ga 15 × 4 Pixels)

電極板の改善

・ パターン間隔が狭く、距離を長くとったため<u>浮遊容量</u>が発生
 ▶ ローパスフィルタを設置
 ▶ 出力信号の発振
 ▶ 差動増幅回路でオペアンプのゲインを1000倍に制限

新遠赤外線アレイ+低温部初段アンプ

5階中、下2階が不具合 -> 15×3ピクセル

遠赤外線センサー用ク ライオスタット(1.6K)

外 形:φ680×820mm 重 量:100kg (AI合金製) 光学系:φ400×200mm 冷媒保持時間:35時間

軸外放物面鏡 ゼロデュア (口径412mm)

平面鏡 SiC (450x600mm)

FITE干涉計概念図

degrees of freedom considered							
Tab.1		degrees of freedom	The minimum and maximum deviation				
interferometer optics (Fig 2)	main parabolic mirror	displacement perpendicular to the optical axis	±80micron				
		diplacement pararell to the optical axis	±15micron				
sensor optics (Fig3)	collimator mirror	displacement perpendicular to the optical axis	±20micron				
		displacement paralell to the optical axis	±10micron				
		tilt	±30"				
	camera mirror(concave)	displacement perpendicular to the optical axis	±20micron				
		displacement paralell to the optical axis	±10micron				
		tilt	±30"				
	camera mirror (convex)	displacement perpendicular to the optical axis	±20micron				
		displacement paralell to the optical axis	±10micron				
		tilt	±30"				
	each plane mirror	tilt	±10"				
the surface accuracy		4th-order Zernike polynomial					
of each optical element		5th-order Zernike polynomial	rms wave front error fixed to 1micron				
in the interferometer optics		6th-order Zernike polynomial					

FITE干涉計概念図

放物面鏡調整機構の性能評価 1、1次の多項式近似式で制御プログラムを作成

真空恒温槽

3、35000 mの気球高度の環境 (0.01気圧、-50℃)を想定した 真空低温試験

FITE干涉計概念図

Sasaki et al. (2014)

(左)市販のシャックハルトマン波面センサーを改造し、視野内の2ビームを独立かる同時に波面計測する装置。 (右)高精度の参照球面(300mm径)も新規開発した。

FITE干涉計概念図

二次平面鏡によるアラインメント

注稿ステッビングモータ

FITE新ゴンドラフレームの製作 (オーストラリア用) ●ゴンドラ構造本体

- ●I/F、条件
 - ●強度
 - 地上で吊下げた状態で地 球の重力を10倍にしても、 破壊に至らない(破壊強度 を越えない)。

(オーストラリアの場合)

●クラッチ・ロック

●組み立て室から打ち上げ 場所への移動時にはロック が必要

●打ち上げ直前のブーム旋 回時ー接続部の間隔拡大 で対処

●スリップリング

●なくすことで機構が簡素化

- - ●CFRP角パイプ接着構造を基本
 - ●概念設計
 - ●応力解析(ANSYS)
 - ●製作前試験
 - ●CFRP角パイプ座屈試験
 - ●工場作業環境測定
 - ●製作
 - ●接着剤の真空脱泡

●白色遮熱塗装

●接着面積の保証(超音波探傷)

●試験

●構造機能試験棟の強度試験装置 で荷重試験(25トン)

(干渉計アーム部は省略)

CFRP角パイプ圧縮座屈破壊試験 (製造ロットも検査)

	最大荷重 [kN]	最大荷重 [トン]	変位 [mm]	破壞時圧力 [GPa]	比例部の収縮 係数[GPa]
厚さ 3mm①	204.3	20.83	5.26	0.176	73
厚さ 3mm(2)	202.85	20.69	5.62	0.174	73
厚さ 5mm①	679.6	69.30	11.11	0.358	55
厚さ5mm2	620.55	63.28	6.32	0.327	55
材質データ(ベスファイト 60%一方向)				1.6-2.2	140

表1:破壊時の荷重と変位

図1:試験機器

新ゴンドラフレーム

CFRP角パイプ接着構造 遮熱白色3重塗装 約100kg (外枠フレームのみ) 接着部の超音波探傷一合格 静荷重10g (25トン)の強度試験実施

ユニバーサルジョイント強度試験

時間

25トン静荷重に耐える ユニバーサルジョイント を製作、試験した。

1秒角精度の姿勢制御のために

従来の気球搭載望遠鏡では経緯台方式が採用された。

方位角:ゴンドラを鉛直軸周りに回転 仰 角:ゴンドラ内で望遠鏡水平軸周りに回転

経緯台方式では、ゴンドラの振り子運動の影響を大きく受ける。

重心を吊り点とする 3軸姿勢制御の採用 によって、1秒角の姿 勢安定性に目途

気球フライト中の振り子運動

姿勢制御試験結果(Nakashima et al. 2011)

新しい星像中心検出アルゴリズム

新OPC環境試験

4台、OS3種、 光ファイバーI/F 2系統

フライト環境 気温:-60~60°C 気圧:1/100気圧程度

FITE 主要諸元

人工衛星と同等の自律制御装置

構造 外形 : 8.5m x 4.4m x 2.5m (H) 重量 : 1620 kg (バラスト含まず) バラスト 800 kg 構造材 : CFRPパイプ接着構造 望遠鏡 / 干渉計 王沙計 : 2ビーム Fizeau型干渉計 鏡 : 平面鏡 4 枚 (SiC) + 軸外放物面鏡 2 枚 (Zerodur) 口径 : 40 cm (直径) センサー

遠赤外線 : 15 x 5 素子アレイ -> 15 x 3 素子アレイ ビームモニター : 中間赤外線アレイ(320x240素子)+ CCD 4 個 クライオスタット : 超流動ヘリウム(30 リットル)

制御システム
 搭載制御回路 : CPU 6 台 + 機能ボード + 耐環境PC 4台
 可動制御箇所 : 25 箇所
 電池 : 360 AH @ 24 volts (リチウムイオン二次電池)
 データ伝送レート : 56 kbps + 800kbps
 地上システム : QL 8 台 + ビデオカメラモニター

Attempts - in 2008 & 2010 in Brazil

SALANDARIA

LASCOS 200

100km

(ISAS)

Launch Base

2017年にオーストラリア アリススプリングス基地 からフライトを希望

For Future

ALADDIN (France) Barillot et al., 2006, SPIE-6268

Instrumental parameters				
Baselines	4 – 30 m			
Telescope diameter	1 m			
Number of warm optics	5			
Warm optics temperature	230 K			
Warm throughput	80%			
Warm emissivity	20%			
Number of cold optics	15			
Cryogenic temperature	77 K			
Cold throughput	10%			
Science waveband	$3.1 - 4.1 \mu m(L)$			
Fringe sensing waveband	$2.0 - 2.4 \mu m (K)$			
Tip-tilt sensing waveband	$1.15 - 1.3 \mu m(J)$			

Fig. 1. Overview of the ALADDIN infrastructure. A 40-m rotating truss bearing the siderostats is mounted on a 30-m high structure (not represented). The light beams collected by the two siderostats are fed into off-axis telescopes and routed towards the nulling instrument cryostat by fixed relay optics (only five reflections outside the cryostat).

南極赤外線干渉計への応用

- ALADDIN
- 中間・遠赤外線なら、FITE型のFizeau干渉計が有効。
 高性能アレイセンサー(2Kx2K)が使える。
 - 軸外し放物面鏡の製作が容易。
 - 長い遅延線が不要(微調整、光路差操作分のみ必要)
- 技術
 - 気球環境と南極環境は似ている。(低温+リモート)
 - 新OPC、光ファイバー
 - 準パラレルメカニズムを用いた光学マウント
 - 光学系の精密調整駆動用