

南極テラヘルツ望遠鏡で探る 宇宙赤外線背景放射の起源

廿日出 文洋 (東京大学 天文学教育研究センター)

南極から遠赤外線-テラヘルツ波で探る宇宙,2022年3月14日,国立極地研究所+オンライン

Cosmic Infrared Background

Spectral Energy Distribution

Herschel **FIR-millimeter Observations** Observed-Frame Wavelength at z=2 [µm] 100 10000 1000 Pope+08 SMG Composite with logL_{IR}=12.5 Range of SEDs (60 Arp220 (logL_{IR}=12.24) Mrk231 (logL_{IR}=12.53) © ESA Observed Flux Density [mJy] 10.00 SPIRE @ SPIRE @ IRE @ [⊉] 500µm SCUBA-2 1.00 350µm 250µm PACS @ LABOCA @ 870µm 10 @ 1.2mm AzTEC @ 1.1m TOOL 0.10 AzTEC/ASTE 1.1 mm image GISMO @ ALMA-DF (Hatsukade+2011) 2.0mm 0.01 Casey+2014 10 100 1000 Rest-Frame Wavelength [µm] IRAM 30m JCMT **ASTE** APEX © East Asian Observato © IRAN C FSC

Source Confusion, Blending

廿日出 文洋(東京大学)「南極テラヘルツ望遠鏡で探る宇宙赤外線背景放射の起源」

1'

ALMA Resolves the CIB

CIB at 1 mm with ALMA

CIB at 650 μ m with ALMA

- ALMA band 8 archive data of calibrator fields (~5.5 arcmin² in total)
- **21** sources (>4.5 σ) in the FoVs, down to 0.7 mJy
- \rightarrow \simeq 100% of the CIB at 650 µm is resolved

廿日出 文洋(東京大学) 「南極テラヘルツ望遠鏡で探る宇宙赤外線背景放射の起源」 Klitsch+2020

CIB at 450 µm with SCUBA-2

- SCUBA-2 observations down to ~ 1 mJy
 - blank fields (down to ~4 mJy) + cluster lensing fields
- \rightarrow The majority of CIB at 450 μ m is resolved

Chen+2013, Casey+2013, Geach+13, Wang+2017

CIB at 250-500 µm with Herschel

- Herschel/SPIRE resolved only ~10-20% of the CIB due to confusion (~20 mJy)
- Stacking analysis using MIPS 24 μm sources as a prior
- → \simeq 100% of the CIB at 250, 350, and 500 µm is resolved

Discrepancy between *Herschel* and SCUBA-2

 Herschel counts at 350 and 500 µm lie significantly above SCUBA-2 450 µm counts → source blending?

Wavelength	Instrument	Resolved Fraction	Note	Ref.
100 µm	Herschel	~75%	Blank field	Magnelli+2013
160 μm	Herschel	~75%	Blank field	Berta+2011, Magnelli+2013
		~89%	P(D) analysis	Berta+2011
<mark>250</mark> μm	Herschel	~15-20%	Blank field	Oliver+2010, Bethermin+2012
		~73%	Stacking (>2 mJy)	Bethermin+2012
350 μm	Herschel	~11-12%	Blank field	Oliver+2010, Bethermin+2012
		~69%	Stacking (>2 mJy)	Bethermin+2012
500 μm	Herschel	~5-6%	Blank field	Oliver+2010, Bethermin+2012
		~55%	Stacking (>2 mJy)	Bethermin+2012
450 μm	SCUBA-2	~20-30%	Blank field	Geach+2013, Wang+2017
		48-153%	Lensing cluster	Chen+2013
		83%	P(D) analysis	Wang+2017
650 μm	SCUBA-2	≤100%	Calibrator fields	Klitsch+2020
850 μm	SCUBA-2	~30%	Blank field	Coppin+2006, Zavala+2017
		44-178%	Lensing cluster	Chen+2013
1.1-1.3 mm	ALMA	~93%	Blank field	González-López+2020
		≤100%	Lensed source	Fujimoto+2015

Antarctic 12-m Terahertz Telescope

ATT12 resolves the CIB at 350 μ m for the first time!

v (GHz)	λ (μm)	HPBW (")	5σ _{rms} (mJy), 10 hr	Confusion, 5σ (mJy)
650	460	9.5	0.60	1.97
850	350	7.3	1.17	2.49
1000	300	6.2	12.9	1.71

photometric performance, point source, SNR=10 in 10⁴s

Antarctic 12-m Terahertz Telescope

 Probe the faint-end of number counts, luminosity functions at 350-500 μm

Constraints on galaxy evolution models

廿日出 文洋(東京大学)「南極テラヘルツ望遠鏡で探る宇宙赤外線背景放射の起源」

100L OF SCIENCE

- Launch is planned for 2022
- Broad band filters of R, I, Z, Y, J, H
- Euclid Deep Fields (EDF)
 - ▶ EDF-North, EDF-Fornax, and **EDF-South** (decl. ~ -50°)

Nancy Grace Roman Space Telescope

- NASA observatory with a 2.4 m primary mirror (same as HST)
- slated to launch in the mid-2020s
- 100x greater FoV than HST IR instrument

0.03

TolTEC Camera on LMT

- Large Millimeter Telescope
 - 50m diameter telescope at 4600 m
- ToITEC
 - ▶ 3 colors, 7000 KIDS detectors
 - Large Scale Structure Survey
 - 40-60 sq. deg.
 - Ultra-Deep Galaxy Survey
 - 0.8 sq. deg. in UDS, COSMOS, GOODS-S

RMS in UDGS FWHM RMS in LSSS N_{pix} λ 25 µJy/bm 2.0 mm 9.5" 450 250 µJy/bm 6.3" 180 µJy/bm 1.4 mm 900 $18 \mu Jy/bm$ 1800 12 µJy/bm 5.0" 120 µJy/bm 1.1 mm

Summary

- CIB contains important information of galaxy evolution
- The origin of CIB at 350-500 μm is not well understood
- ATT12 will resolve the CIB at 350-500 μm for the first time

