

SPICAで検討した high-z AGN サイエンスの紹介と南極テラヘルツ望遠鏡への展望

京都大学 -> 国立天文台(4月から)

AGN in the early Universe

- ~200 quasars at z > 6 have been discovered so far.
- We can do a statistical investigation of those quasars in the early Universe (e.g., luminosity function).
- In the 2030s, can we do similar works even for z > 7 quasars!?

Introduction

Key questions

When and how was the dusty torus formed?
How do their NIR-FIR SEDs look like?

÷

Yoshiki TOBA (SOKENDAI, ISAS/JAXA) and YOUR NAME here !

SPICA conference (2013) のポスター

Search for Dust-free Quasars at *z* > 6 **Using** *SPICA* **MCS Photometry**

大学院生時代からずっと興味持ってます。

Yoshiki Toba

The Graduate University for Advanced Studies (Sokendai), Japan Institute of Space and Astronautical Science, JAXA, Japan

Abstract. I propose to search for *dust-free quasars* without hot-dust emission at z > 6. I plan to perform the deep mid-infrared photometry with Mid-infrared Camera and Spectrometer (MCS). Its high sensitive and continuous-band (5–38 µm) imaging

SPICAで検討した high-z AGN サイエンスの紹介と 南極テラヘルツ望遠鏡への展望

SPICAで検討した high-z AGN サイエンス

- Hot dust-free quasars
- SED analysis
- Dust composition

SPICA × high-z AGN サイエンス

The origin of dust torus

When and how was the dusty torus of quasar formed?

SPICA × h	igh-z AGN サイ	エンス	-2]	Normal quasar	SED template
MENU 🗡	natu International journal	of science			
			Citatiana CT		
		Altmetric: 9	Citations: 65		More detail »

Letter

Dust-free quasars in the early Universe

Linhua Jiang[™], Xiaohui Fan, W. N. Brandt, Chris L. Carilli, Eiichi Egami, Dean C. Hines, Jaron D. Kurk, Gordon T. Richards, Yue Shen, Michael A. Strauss, Marianne Vestergaard & Fabian Walter

Nature 464, 380–383 (18 March 2010)

doi:10.1038/nature08877

Download Citation

Astronomy and astrophysics Cosmology

Received: 23 November 2009 Accepted: 26 January 2010 Published online: 18 March 2010

Rest wavelength [μ m]

Jiang et al. (2010)

SPICA × high-z AGN サイエンス

The origin of dust torus

Hot dust-free quasars (DFQs)

SPICA × high-z AGN サイエンス

The origin of dust torus

Hot dust-free quasars (DFQs)

Acc These DFQs are likely to be first-generation quasars born in dust-free environments.

They are too young to have formed a detectable amount of hot dust around them

We know only two DFQs at z~6

name	Ζ	M ₁₄₅₀		
SDSS J0005-0006	5.84	-25.73		
SDSS J0303-0019	6.07	-25.56		
	Eilers et al. (2017)			

 We have investigated only luminous quasars selected with SDSS.

(see Matsuoka+16,18abc,19ab, 21)

 How about less luminous quasars selected with HSC?

9

M_{BH} dependence on the hot-dust abundance

JWST/SPICA proposal

- Investigating hot dust properties of less luminous quasars.
- Search for DFQs in the early Universe.

SPICA × high-z AGN サイエンス

Rest-frame IR SEDs

How do their NIR-FIR SEDs look like?

NIR-FIR SED of luminous quasars at *z* > 5

https://ui.adsabs.harvard.edu/abs/2014ApJ...785..154L/abstract

SPECTRAL ENERGY DISTRIBUTIONS OF QSOs AT z > 5: COMMON ACTIVE GALACTIC NUCLEUS-HEATED DUST AND OCCASIONALLY STRONG STAR-FORMATION

C. LEIPSKI¹, K. MEISENHEIMER¹, F. WALTER¹, U. KLAAS¹, H. DANNERBAUER², G. DE ROSA³, X. FAN⁴, M. HAAS⁵, O. KRAUSE¹, AND H.-W. RIX¹

NIR-FIR SED of luminous quasars at z > 5

https://ui.adsabs.harvard.edu/abs/2014ApJ...785..154L/abstract

100

10

rest wavelength (μm)

10

rest wavelength (um)

100

SPECTRAL ENERGY DISTRIBUTIONS OF QSOs AT z > 5: COMMON ACTIVE GALACTIC NUCLEUS-HEATED DUST AND OCCASIONALLY STRONG STAR-FORMATION

SPIRE で受かった天体は 12/69 (17%) (うち、z > 6 は 3天体)

ダスト温度が決まった天体は 6/69 (8%) (うち、z > 6 は 1天体) (それ以外は T_{dust} = 47 K でfixして解析)

0.1

used for SED fitting. As an example, we use the observed photometry of the z = 5.03 QSO J1204-0021.

12

σ

SPICAで検討した high-z AGN サイエンスの紹介と 南極テラヘルツ望遠鏡への展望

南極テラヘルツ望遠鏡によるhigh-z AGN 研究

高感度・多周波観測が活きるサイエンス

・Unobscured AGN (quasars)の FIR SED 【追観測】

広視野が活きるサイエンス

• Obscured AGN at z > 4【探查】

南極 12m テラヘルツ望遠鏡(ATT12)の感度-連続波-

	Freq.	HPBW	$\eta_{ m A}$	В	NEFD	Sensi	tivity	Confusion
	[GHz]	["]		[BHz]	$[mJy s^{1/2}]$	$5 \sigma_{\rm rms}$	[mJy]	5σ[mJy]
						τ=1hr	10 hr	
PWV=0.14mm(冬季 50% level)								
ϵ =20 μ m	100	61.8	0.695	30	10.75	0.896	0.283	
	230	26.9	0.674	35	10.62	0.885	0.280	1.38
	300	20.6	0.657	35	10.53	0.877	0.278	1.89
	350	17.7	0.642	35	12.20	1.017	0.322	2.055
	400	15.5	0.626	40	13.89	1.158	0.366	2.28
	460	13.4	0.603	46	17.88	1.490	0.471	2.43
	500	12.4	0.587	50	23.33	1.944	0.615	2.445
	650	9.5	0.521	65	22.67	1.889	0.598	1.965
	850	7.3	0.422	85	44.33	3.694	1.169	2.49
	1000	6.2	0.347	50	488.14	40.678	12.866	1.71
	1300	4.8	0.306	65	460.95	38.413	12.150	0
	1500	4.1	0.144	75	978.70	81.558	25.796	0
	2000	3.1	0.060	50	8594.30	716.191	226.523	0

https://www.px.tsukuba.ac.jp/~nakai/astroobs/pdf/antarctic12m-continuum.pdf

高感度・多周波観測が活きるサイエンス

Unobscured AGN (quasars)の FIR SED【追観測】

- Hot dust-free quasars
- Low-luminosity quasars
- High-luminosity quasars

南極THz望遠鏡

南極THz望遠鏡 × high-z AGNサイエンス

SDSS hot dust-free quasars (DFQs)

南極THz望遠鏡 × high-z AGNサイエンス

The origin of dust torus

SDSS hot dust-free quasars (DFQs)

Frequency [GHz]

cold dust poor でない場合は ATT12 で cold dust 放射を検出可能!

ATT30なら cold dust free か否かも 含めて判断可能!?

南極THz望遠鏡 × high-z AGNサイエンス

A low-L HSC quasar

典型的な type 1 AGN template で FIR が説明できる天体が多い!?

cold dust poor quasars の候補も!?

10 ⁻⁴ L				<u>.</u>				. <u>.</u> .		0, 20000/	
1	10	100	1000	1	10	100	1000	1	10	100	1000
	observed	wavelength	[µm]		observed w	vavelength [μm]		observed w	vavelength [µm]

low-L quasars の FIR SED 系統的調査 は ATT30 の時代に本格化できそう

SEDs of high-L SDSS quasars at z > 6

SEDs of high-L SDSS quasars at z > 6

High-z bright quasars の rest FIR SED (T_{dust}, M_{dust})の系統的調査が可能に!

これから見つかってくるであろう z > 7,8 天体とも相性抜群

南極THz望遠鏡

広視野が活きるサイエンス

Obscured AGN at z > 4【探査】

- Optically-dark AGN
- Roman "drop-out"

南極THz望遠鏡 × high-z AGNサイエンス

何を明らかにしたいか

Optically-dark AGN が 宇宙のSMBHの質量降着史に果たした役割

Aird+15

Preparatory work

the **AKARI-NEP**

X TIIGH-2 AG

南

TZ主述贶

Preparatory work

IIZ主巫呪 X TIIgII-Z AO

AGN-dominant と期待できる optically dark 銀河の発見

Expected SED as a function of redshift

Expected SED as a function of redshift

Expected SED as a function of redshift

Expected SED as a function of redshift

GREX-PLUS と ATT12 で Roman "dropout" AGN at z > 4 の系統的探査 (e.g., 100平方度)

observed wavelength $[\mu m]$

発見期待値(100平方度探査した場合)

Dodobift	Surface density	Expected number		
neusniit	[deg ⁻²]	100 deg ²		
1 < z < 2	5.6	~550		
2 < z < 3	1.5	~ 150		
3 < z < 4	2.1	~ 200		
z > 4	0.2	~ 20		

※ 下限値

※ Toba+20c で発見された optically-dark 銀河のうち、 photo-z が決定できた天体数からの見積もり

南極から遠赤外線-テラヘルツ波で探る宇宙

2022.03.14

Summary

口径	12	2 m	30 m		
積分時間	1 hr	10hr	1hr	10hr	
Unobscured AGN	high-L (M ₁₄₅₀ ~ -26)	mediam-L (M ₁₄₅₀ ~ -25)	low-L (M ₁₄₅₀ ~ -24)	cold-dust poor AGN	
Obscured AGN	Roman-dropout AGN at z > 4				

- SED 解析(T_{dust}, M_{dust}の z 進化など)
- GREX-PLUSやFORCEなどとのシナジーにも期待

南極から遠赤外線-テラヘルツ波で探る宇宙

2022.03.14

Summary

口径	12	2 m	30 m				
積分時間	1 hr	10hr	1hr	10hr			
Unobsct高感 AGN	度・多周』	支観測 が活る	きるサイエ	ンス AGN			
Obscured AGN 広視野が活きるサイエンスtz>4 探査							
• SED 解析	(T _{dust} , M _{du}	ust の z 進化	など)				
• GREX-PL	USやFORC	Eなどとの	シナジーにも	期待			

END

戦略提案

rest-FIR SED の決定

-> low-z AGNのSEDと比較、ダスト質量(温度)のz進化、理論 モデルとの比較など

- <u>high-z クエーサー at z > 6 【既知天体の追観測】</u>
 - SDSSクラスの明るいクエーサーをATT12でフォローアップ。
 - HSCクラスの暗いクエーサーをATT30でフォローアップ。cold dust poor/free ク エーサー探査
 - ATT稼働時にz > 7 や z > 8 のクエーサーが見つかっていたとしても、negative Kcorrection が効くので、ATT12/30で観測可能。
- ・ <u>high-z obscured AGN at z > 4【未知天体の探査】</u>
 - Roman-dropout AGN は ATTやGREX-PLUSでしか見つけられない種族。FORCE との シナジーでAGNの性質(X線光度, NHなど)も推定可能(日本主導ミッションの独壇場)
 - 銀河進化の中でこの種族を特徴付ける

時間が余れば

Importance of dust in high-z galaxies/AGNs

- Understanding the following dust properties as a function of redshift:
 - Composition
 - Size distribution
 - Abundance
- Source of dust in the early Universe:
 - type II SN?
 - AGB?
 - POPIII?

南極THz望遠鏡 × high-z AGNサイエンス

feasibility

GREX-PLUSとのシナジー

- ・ LSST や Roman でも "見えない" けど、GREX-PLUS 5-10 µm 帯だけが "見える"、そんな天体があればステキ。。 ↩
- 実際にいるかは別として、そのような天体がどのような性質
 を持ち得るのかを調査
- ・ SED template 生成ツールとして CIGALE を使い、パラメー タサーチを実施
- redshidt, SFH, SSP, IMF, AGN トーラス モデル, ダスト モデル のパラメータを振り、約7000万個のtemplate を作成
- その中で、条件を満たしそうなものを抽出

南極THz望遠鏡 × high-z AGNサイエンス

GREX-PLUSとのシナジー

南極THz望遠鏡 × high-z AGNサイエンス

GREX-PLUSとのシナジー

Roman "dropout" AGN at z > 4 の素性を知る最適な組み合わせの1つ

