星・惑星形成領域におけるサブミリ波偏光観測の展望

Munetake MOMOSE (Ibaraki University)

ı

- 1. Magnetic fields in Star-forming regions
- 2. Polarization observations of Protoplanetary (& Debris) Disks

Taurus@250µm + Optical/IR Pol. (Palmeirim+ 2013; Heyer+ 2008)

1.5 1.5 300au – 0.5 300au – 0.5 300au – 0.5 300au – 0.5 300au – 0.5

mJv/beam

Prestellar Core, FeSt1-457 @1.6µm(*IRSF*; Kandori+2017)

Protobinary, L1333 IRS4A @880µm(SMA; Girart+2006)

~ 0.001pc (200au)

HD142527, PI @ 880µm (ALMA; Kataoka+ 2016)

(1) Magnetic fields in Star-forming regions

Formation of low-mass stars

Importance of magnetic (B-)field in formation of stars and planets

- Transportation of angular momentum in a core
 - inevitable during star formation (L_{core}/M_{core} » L_★/M_★)
 - formation of disks, outflows & jets
- Turbulence by MRI in a disk
 - provide viscosity in an accretion disk
 - hinder the growth of dust grains
- Dissipation of B-field should occur during star formation
 - $B_{core}R_{core}^2 \gg B_{\bigstar}R_{\bigstar}^2$
 - Ambipolar diffusion (Low ρ) → Ohmic Dissipation (High ρ)

Observational studies on B-field

- B-strength: Zeeman effect
 - OH, CN, (HI)
 - CCS with large SDs and ALMA (at 40 GHz) in near future?
- B-direction: polarization due to extinction/emission by aligned dichroic dust particles
 - Opt. & nIR: <u>extinction</u> in background stars(**B** | E-vector)
 - fIR mm: thermal emission of dust particles (**B** ⊥ E-vector)
- Millimeter & sub-millimeter wavelengths are unique
 - B-fields in densest & coldest regions
 - Ground-based telescope → high resolution + wide FOVs

1.3mm Survey of Dust Polarization by CARMA

Hull et al. (2014); "TADPOL"-survey

- Pol. towards 30 cores and 8 regions forming stars at 2.5"
 - including low-mass Class 0 & I
- Compare with ≥20" B-fields with JCMT etc. as well as small-scale outflow directions

c.f.) B-vectors derived from λ=877μm Pol. with SMA(red); Girart et al. (2006)

1.3mm Survey of Dust Polarization by CARMA

Hull et al. (2014); "TADPOL"-survey

L1448 IRS 2 (Class 0); d=230pc

L1527 (Class 0); d=140pc

1.3mm Survey of Dust Polarization by CARMA

Hull et al. (2014); "TADPOL"-survey

(Results)

A subset of objects (high pol.)
 have consistent B-directions
 in both size scales, but
 others do not.

- Outflows seem randomly aligned with B-fields at least for high-P_{frac} sources
- B-directions (small & large)
- Outflows
- AM (the axis of rotating disk)

 are not always parallel

Recent progress (1): New large-scale maps

Ward-Thompson+ (2017); Pattle+ (2017); "BISTRO"-team

- JCMT + SCUBA-2/POL-2,
 14"-beam at λ=850μm
- B ⊥ filament vs. B || filament
- B-field strength estimated by Chandrasekhar-Fermi method
 - equipartition of energy between B-field & turbulence

$$B_{
m pos} \propto rac{\sqrt{n_{
m H_2}} \Delta V_{
m turb}}{\langle \sigma_{ heta}
angle}$$

■ a systematic method to derive <σ_θ> is also employed (Hildebrand+2009; Pattle+ 2017)

B-field map in Orion based on λ=850μm Pol. image

Recent progress (2): ALMA Pol. maps

Hull+ (2017)

No hour-glass morphology (weakly magnetized cloud?)

Recent progress (2): ALMA Pol. maps Hull+ (2017)

Simulation 120 μG initial mean field I.2 μG 12 μG 36 µG \mathcal{O} <u>р</u>с Initial magnetic field orientation SP SD/ **SPICA** Core **ALMA** weak field strong field

random alignment, consistent with the "weak-field" case

Nearby Star-forming regions with

South-pole Large SD

- B-field structure in size-scale ≥ dense cores
 - change of field directions in smaller size-scales (ALMA)...
 - statistics on protostellar disks
 - outflows' structure
 - field strengths
 - Chandrasekhar-Fermi method
 - Other methods (e.g., Koch+ 2012)
 - need cross-check with Zeeman?
- vs. SPICA/SAFARI
 - wavelength dependence
 - dust characterization,
 - alignment mechanism
 (environmental effects, etc.)

misalignment between B & AM may produce Two types of outflows ? (Matsumoto+ 2017)

Figure 15. Schematic diagram of two types of outflows: (a) magnetocentrifugal wind, and (b) spiral flow. The surfaces represent isodensity surfaces, and the tubes denote the magnetic field lines. The arrows indicate the direction of the outflow

<u>λ-dependence</u>

BLAST observations in Vela C molecular clouds (red) do not show "polarization-minimum" at $\lambda \sim 350 \mu m$ (Gandilo+ 2016; Fissel+ 2016)

An Observation Plan

- Unique if multiple frequencies available (e.g., 400 & 850GHz)
- assuming T=15K, A_v≥20mag., or N(H) ≥ 9.4E22 cm⁻²
 - to be complimentary to SPICA

表 1.1: ダスト偏光観測に必要な感度 (total intensity×1%に対するもの)

	$D=10\mathrm{m}$		$D=30\mathrm{m}$	
周波数	ビームサイズ	必要感度 (1σ)	ビームサイズ	必要感度 (1σ)
(GHz)	(")	(mJy/beam)	(")	(mJy/beam)
400	18.6	1.11	6.2	0.123
850	8.7	1.95	2.9	0.216

ground-based polarization observations above 850 GHz may be possible only from south pole regions.

(2) Polarization observations of Protoplanetary (& Debris) Disks

Polarization in a protoplanetary disk A new window opened by ALMA

spatial resolution is critical to reveal small-scale structure of polarization vectors

theoretical background

Origin of dust polarization at mm-submm

- 1. Thermal emission of "aligned" grains (Tazaki+ 2017)
 - Two alignment mechanisms
 - A. **JIIB**: Larmor precession (**B**: magnetic field)
 - B. **J II k**: Radiative precession (**k**: net radiation flux)
 - Radiative alignment ($J \parallel k$) seems dominant for a large grains ($a > 100 \mu m$) in a protoplanetary disk
- 2. Self-scattering of anisotropic radiation fields by dust grains (Kataoka+ 2015, 2016a; Yang+ 2016)
 - High albedo, and, High pol. efficiency are required ← prominent only at λ~ (2π)a_{max}; strong λ-dependence!

Two external alignment mechanisms

 $ec{J} \parallel ec{k}$

with radiation flux

with toroidal B-field

 $ec{J} \parallel ec{B}$

Tazaki et al. (2017)

Various timescales of related processes in a protoplanetary disk (Tazaki et al. 2017)

Timescale: the shorter is more important

(black) gaseous damping

(red) radiation alignment

magnetic precession

(green)

10% paramagnetic inclusion

(blue)

10% super-

paramagnetic inclusion

(red)

theoretical background

Origin of dust polarization at mm-submm

- 1. Thermal emission of "aligned" grains (Tazaki+ 2017)
 - Two alignment mechanisms
 - A. **JIIB**: Larmor precession (**B**: magnetic field)
 - B. **JII k**: Radiative precession (**k**: net radiation flux)
 - Radiative alignment ($J \parallel k$) seems dominant for a large grains ($a > 100 \mu m$) in a protoplanetary disk
- 2. Self-scattering of anisotropic radiation fields by dust grains (Kataoka+ 2015, 2016a; Yang+ 2016)
 - High albedo, and, High pol. efficiency are required ← prominent only at λ~ (2π)a_{max}; strong λ-dependence!

Condition for polarization due to scattering

Kataoka, Muto, MM et al. (2015)

For efficient scattering

(grain size) ≥ λ/2π

For efficient polarization
 (grain size) ≤ λ/2π

There is a grain size which contributes most to the polarized emission

If (grain size) ~ λ/2π, the polarized emission due to dust scattering is strongest

HL Tau: Strong λ-dependence

Observations / Kataoka et al. (2017, 2015); Stephans et al. (2017; 2014)

870

Polarized

Polarization directions

- λ=3.1mm: azimuthal ← radiative alignment (i.e., J | k)
- λ =0.87mm: parallel to the minor axis \leftarrow self-scattering
- consistent with the case of $a_{\text{max}} \approx 100 \mu \text{m}$ with $n(a) \approx a^{-3.5}$

Protoplanetary Disks/Debris Disks with a South-Pole Single Disk at THz

- protoplanetary disks seem sufficiently bright to make polarization observations at THz
 - HL Tau: ~10Jy @ λ=450μm (Andrews & Williams 2005)
 - DM Tau: ~ 1.08 Jy @ λ=350µm (Andrews & Williams 2005)
- will not be able to spatially resolve them, but ...
 - polarization will be detected only when the polarization directions in the disk are rather uniform
 - λ-dependence of polarization detection scattering?
- nearby debris disks: Pol may be difficult, but...
 - β Pic, Fomalhaut, ε Eri (Vega): "The Fabulous Four", Pol.?
 - τ Cet: 5.8mJy at λ=850μm(JCMT) r_{out} = 52au at d=3.65 pc, can be imaged in Total intensity with better sensitivity

Fohmalhaut age = 0.44 Gyr; (MacGregor+ 2017) d=7.66 pc; A4V

-10

-20

Background

source

10

0

Δα ["]

-10

-20

age = 0.8-1.4Gyr; d=3.22 pc; K2V

0.2

S1-S7:
Background sources

τ Cet (MacGregor+ 2016)

> age = 7.24 Gyr; d=3.65 pc; G8V

Protoplanetary Disks/Debris Disks with a South-Pole Single Disk at THz

- protoplanetary disks seem sufficiently bright to make polarization observations at THz
 - HL Tau: ~10Jy @ λ=450μm (Andrews & Williams 2005)
 - DM Tau: ~ 1.08 Jy @ λ=350µm (Andrews & Williams 2005)
- will not be able to spatially resolve them, but ...
 - polarization will be detected only when the polarization directions in the disk are rather uniform
 - λ-dependence of polarization detection scattering?
- nearby debris disks: Pol may be difficult, but...
 - β Pic, Fomalhaut, ε Éri (Vega) : "The Fabulous Four", Pol.?
 - τ Cet: 5.8mJy at λ=850μm(JCMT) r_{out} = 52au at d=3.65 pc, can be imaged in Total intensity with better sensitivity

Summary

- Large vs. small scale B-fields and their connection with disk/outflow structure and their evolution
 - B-Field's directions & strengths at various size-scales
 - wavelength dependence of polarization efficiency
- Small-scale structure of polarization in protoplanetary disks has been detected by ALMA
 - no B-field alignment ? ... but, wavelength dependence for a large sample -> dust size
- Nearby protoplanetary & debris disks may be important targets for the Single Disk in South Pole regions