星•惑星形成領域における
 サブミリ波偏光観測の展望

Munetake MOMOSE（Ibaraki University）

1. Magnetic fields in Star-forming regions
2. Polarization observations of Protoplanetary (\& Debris) Disks

$\sim 0.1 \mathrm{pc}$

$B-f i e / d \sim 0.01$ pc (2000au)

mJy/beam

Taurus@250 \quad m + Optical/IR Pol. (Palmeirim+ 2013; Heyer+ 2008)

Prestellar Core, FeSt1-457 @1.6 $\mu \mathrm{m}$ (IRSF; Kandori+2017)

Protobinary, L1333 IRS4A @880 $\mu \mathrm{m}($ SMA; Girart+2006)

(1) Magnetic fields in Star-forming regions

Formation of low-mass stars

(1)Molecular cloud cores
(gravity)~(supporting forces)

accretion of circumstellar material + Outflow
-> growth of star-disk system
(2) Onset of

Dynamical Collapse

"First (stellar) core" at the center
(4) T Tauri stars

Dissipation of the envelope Star + Protoplanetary disk

Shu, Adams, Lizano (1987)

Importance of magnetic (B-)field in formation of stars and planets

- Transportation of angular momentum in a core
- inevitable during star formation ($L_{\text {core }} / M_{\text {core }} \gg L_{\star} / M_{\star}$)
- formation of disks, outflows \& jets
- Turbulence by MRI in a disk
- provide viscosity in an accretion disk
- hinder the growth of dust grains
- Dissipation of B-field should occur during star formation
- Borerencore $^{2}>\mathrm{B}_{\star} \mathrm{R}_{\star}{ }^{2}$

■ Ambipolar diffusion (Low ρ) \rightarrow Ohmic Dissipation (High ρ)

Observational studies on B-field

- B-strength: Zeeman effect
- OH, CN, (HI)

■ CCS with large SDs and ALMA (at 40 GHz) in near future?

- B-direction: polarization due to extinction/emission by aligned dichroic dust particles
- Opt. \& nIR: extinction in background stars(B || E-vector)
\square fIR - mm: thermal emission of dust particles ($\mathbf{B} \perp \mathrm{E}$-vector)
- Millimeter \& sub-millimeter wavelengths are unique
- B-fields in densest \& coldest regions
- Ground-based telescope \rightarrow high resolution + wide FOVs

1.3mm Survey of Dust Polarization by CARMA

Hull et al. (2014); "TADPOL"-survey

- Pol. towards 30 cores and 8 regions forming stars at 2.5 " \square including low-mass Class 0 \&
- Compare with ≈ 20 " B-fields with JCMT etc. as well as small-scale outflow directions

c.f.) B-vectors derived from $\lambda=877 \mu \mathrm{~m}$ Pol. with SMA(red);

L1333 IRS 4A (Class 0); d=320pc

Girart et al. (2006)

1.3mm Survey of Dust Polarization by CARMA

 Hull et al. (2014); "TADPOL"-surveyL1448 IRS 2 (Class 0); d=230pc

L1527 (Class 0); d=140pc

$\underset{\text { Right Ascension (J2000) }}{\text { 5. }}$

Right Ascension (J2000)

1.3mm Survey of Dust Polarization by CARMA

 Hull et al. (2014); "TADPOL"-survey
(Results)

- A subset of objects (high pol.) have consistent B-directions in both size scales, but others do not.
- Outflows seem randomly aligned with B-fields at least for high-Pfrac sources
- B-directions (small \& large)
- Outflows
- AM (the axis of rotating disk) are not always parallel
Δ (B-field angles) vs. Pol. fraction

Outflows vs. Small-scale B

High-P ${ }_{\text {frac: }}$ random Low-P ${ }_{\text {frac: }}$ outflows \perp B ?

Recent progress (1): New large-scale maps Ward-Thompson+ (2017); Pattle+ (2017); "BISTRO"-team

- JCMT + SCUBA-2/POL-2, 14 "-beam at $\lambda=850 \mu \mathrm{~m}$
- B \perp filament vs. B || filament
- B-field strength estimated by Chandrasekhar-Fermi method
- equipartition of energy between B-field \& turbulence

$$
B_{\mathrm{pos}} \propto \frac{\sqrt{n_{\mathrm{H}_{2}}} \Delta V_{\mathrm{turb}}}{\left\langle\sigma_{\theta}\right\rangle}
$$

- a systematic method to derive $<\sigma_{\theta}>$ is also employed (Hildebrand+2009; Pattle+ 2017)

B-field map in Orion based on $\lambda=850 \mu \mathrm{~m}$ Pol. image

Recent progress (2): ALMA Pol. maps

 Hull+ (2017)

No hour-glass morphology (weakly magnetized cloud?)

Recent progress (2): ALMA Pol. maps

 Hull+ (2017)
random alignment, consistent with the "weak-field" case

Nearby Star-forming regions with

South-pole Large SD

- B-field structure in size-scale \gtrsim dense cores
\square change of field directions in smaller size-scales (ALMA)...
- statistics on protostellar disks
- outflows' structure
- field strengths
- Chandrasekhar-Fermi method
- Other methods (e.g., Koch+ 2012)
- need cross-check with Zeeman?
- vs. SPICA/SAFARI
- wavelength dependence
- dust characterization,
- alignment mechanism (environmental effects, etc.)
misalignment between B \& AM may produce Two types of outflows? (Matsumoto+ 2017)
(a) Magneto-centrifugal wind (b) Spiral flow

Figure 15. Schematic diagram of two types of outflows: (a) magnetocentrifugal
wind, and (b) spiral flow. The surfaces represent isodensity surfaces, and the
tubes denote the magnetic field lines. The arrows indicate the direction of the
outlow
outflow.

λ-dependence

BLAST observations in Vela C molecular clouds (red) do not show "polarization-minimum" at $\lambda \sim 350 \mu \mathrm{~m}$ (Gandilo+ 2016; Fissel+2016)

An Observation Plan

－Unique if multiple frequencies available（e．g．， 400 \＆ 850 GHz ）
－assuming $T=15 \mathrm{~K}, \quad A_{v} \approx 20 \mathrm{mag}$ ．，or $\mathrm{N}(\mathrm{H}) \geq 9.4 \mathrm{E} 22 \mathrm{~cm}^{-2}$
－to be complimentary to SPICA

表 1．1：ダスト偏光観測に必要な感度 （total intensity $\times 1 \%$ に対するもの）				
	$D=10 \mathrm{~m}$		$D=30 \mathrm{~m}$	
周波数	ビームサイズ	必要感度 (1σ)	ビームサイズ	必要感度 (1σ)
(GHz)	$\left({ }^{\prime \prime}\right)$	(mJy)		
400	18.6	1.11	6.2	(bJy)
850	8.7	1.95	2.9	0.123

ground－based polarization observations above 850 GHz may be possible only from south pole regions．

(2) Polarization observations of Protoplanetary (\& Debris) Disks

Polarization in a protoplanetary disk A new window opened by ALMA

HD 142527 at $\lambda=874 \mu \mathrm{~m}$
Polarized Intensity

HL Tau at $\lambda=3.1 \mathrm{~mm}$
Polarized Intensity

spatial resolution is critical to reveal small-scale structure of polarization vectors

theoretical background

Origin of dust polarization at mm-submm

1. Thermal emission of "aligned" grains (Tazaki+ 2017)

- Two alignment mechanisms
A. $\underline{\boldsymbol{J} \| \boldsymbol{B}}$: Larmor precession (B: magnetic field)
B. $\boldsymbol{J} \boldsymbol{I} \boldsymbol{k}$: Radiative precession (\boldsymbol{k} : net radiation flux)
- Radiative alignment ($J / / \boldsymbol{k}$) seems dominant for a large grains ($a>100 \mu \mathrm{~m}$) in a protoplanetary disk

2. Self-scattering of anisotropic radiation fields by dust grains (Kataoka+ 2015, 2016a; Yang+ 2016)

- High albedo, and, High pol. efficiency are required \leftarrow prominent only at $\lambda \sim(2 \pi) a_{\max }$; strong λ-dependence !

Two external alignment mechanisms

$$
\vec{J} \| \vec{k}
$$

with radiation flux

with toroidal B-field

Face-on view

Inclined view

Inclined view

Tazaki et al. (2017)

Various timescales of related processes in a protoplanetary disk (Tazaki et al. 2017)

Timescale : the shorter is more important

(black) gaseous damping (red) radiation alignment
magnetic precession (green) 10% paramagnetic inclusion (blue) $10 \% ~ s u p e r-~$ paramagnetic inclusion (red) radiation precession

theoretical background

Origin of dust polarization at mm-submm

1. Thermal emission of "aligned" grains (Tazaki+ 2017)

- Two alignment mechanisms
A. $\underline{\boldsymbol{J} \| \boldsymbol{B}}$: Larmor precession (B: magnetic field)
B. $\boldsymbol{J} \boldsymbol{I I} \boldsymbol{k}$: Radiative precession (\boldsymbol{k} : net radiation flux)
- Radiative alignment ($J / / \boldsymbol{k}$) seems dominant for a large grains ($a>100 \mu \mathrm{~m}$) in a protoplanetary disk

2. Self-scattering of anisotropic radiation fields by dust grains (Kataoka+ 2015, 2016a; Yang+ 2016)

- High albedo, and, High pol. efficiency are required \leftarrow prominent only at $\lambda \sim$ (2п)amax ; strong λ-dependence!

Condition for polarization due to scattering

 Kataoka, Muto, MM et al. (2015)- For efficient scattering
(grain size) $\approx \boldsymbol{N} \mathbf{2 \pi}$
- For efficient polarization (grain size) $\leqslant \boldsymbol{N} \mathbf{2 \pi}$

There is a grain size which contributes most to the polarized emission

If (grain size) $\sim \boldsymbol{N} / 2 \pi$, the polarized emission due to dust scattering is strongest

HL Tau: Strong λ-dependence

 Kataoka et al. (2017, 2015); Stephans et al. (2017; 2014)

Polarization directions

- $\lambda=3.1 \mathrm{~mm}$: azimuthal \leftarrow radiative alignment (i.e., $\boldsymbol{J} / / \boldsymbol{k}$)
- $\lambda=0.87 \mathrm{~mm}$: parallel to the minor axis \leftarrow self-scattering
- consistent with the case of $a_{\max } \approx 100 \mu m$ with $n(a) \propto a^{-3.5}$

Protoplanetary Disks/Debris Disks with
 a South-Pole Single Disk at THz

- protoplanetary disks seem sufficiently bright to make polarization observations at THz
■ HL Tau: ~10Jy @ $\lambda=450 \mu \mathrm{~m}$ (Andrews \& Williams 2005)
- DM Tau: ~ 1.08 Jy @ $\lambda=350 \mu \mathrm{~m}$ (Andrews \& Williams 2005)
- will not be able to spatially resolve them, but ...
- polarization will be detected only when the polarization directions in the disk are rather uniform
$\square \lambda$-dependence of polarization detection - scattering ?
- nearby debris disks: Pol may be difficult, but..
$■ \beta$ Pic, Fomalhaut, ε Eri (Vega) : "The Fabulous Four", Pol.?
- T Cet : 5.8 mJy at $\lambda=850 \mu \mathrm{~m}(\mathrm{JCMT}) \mathrm{r}_{\text {out }}=52 \mathrm{au}$ at $\mathrm{d}=3.65 \mathrm{pc}$, can be imaged in Total intensity with better sensitivity

Fohmalhaut age = 0.44 Gyr;
ε Eri

$$
\text { age }=0.8-1.4 \mathrm{Gyr} ;
$$

(MacGregor+ 2017) d=7.66 pc; A4V

(Chavez-Dagostino+ 2016) $\mathrm{d}=3.22 \mathrm{pc} ;$ K2V

τ Cet
(MacGregor+ 2016)
age $=7.24$ Gyr; d=3.65 pc; G8V

Protoplanetary Disks/Debris Disks with
 a South-Pole Single Disk at THz

- protoplanetary disks seem sufficiently bright to make polarization observations at THz
■ HL Tau: ~10Jy @ $\lambda=450 \mu \mathrm{~m}$ (Andrews \& Williams 2005)
- DM Tau: ~ 1.08 Jy @ $\lambda=350 \mu \mathrm{~m}$ (Andrews \& Williams 2005)
- will not be able to spatially resolve them, but ...
- polarization will be detected only when the polarization directions in the disk are rather uniform
- λ-dependence of polarization detection - scattering ?
- nearby debris disks: Pol may be difficult, but..
$\square \beta$ Pic, Fomalhaut, ε Eri (Vega) : "The Fabulous Four", Pol.?
- T Cet : 5.8 mJy at $\lambda=850 \mu \mathrm{~m}(\mathrm{JCMT}) \mathrm{r}_{\text {out }}=52 \mathrm{au}$ at $\mathrm{d}=3.65 \mathrm{pc}$, can be imaged in Total intensity with better sensitivity

Summary

- Large vs. small scale B-fields and their connection with disk/outflow structure and their evolution
- B-Field's directions \& strengths at various size-scales
- wavelength dependence of polarization efficiency
- Small-scale structure of polarization in protoplanetary disks has been detected by ALMA - no B-field alignment? ... but, wavelength dependence for a large sample -> dust size
- Nearby protoplanetary \& debris disks may be important targets for the Single Disk in South Pole regions

